The phase diagram is one of the most extensively used disciplines in the Applied Sciences. They are relevant to different areas both in science and engineering, as well as to the various branches of the national economy. In many scientific and technical specialties, such as physics, chemistry, geology, materials science and technology, chemical engineering, etc., it is easy to find its application that strongly shows the importance of phase diagram in the science and technology today. In the early stages of development, phase diagrams were mainly obtained from experimental measurements. With the increasing number of the system components as well as the severe demands placed on experimental materials requiring corrosion-resistant, heat-resistant, etc., the experimental methods were no longer able to meet these requirements, especially with respect to generating multi-component phase diagrams. The theoretical calculation of phase diagrams has now become the principal method for obtaining the desired phase diagrams. This route has been especially favored by the rapid advance of research and development in computer science and technology that induced the “art” of phase diagram calculation to a new level. Under these circumstances, the continuing research on the theory of phase diagrams has recently and naturally become the topic of great and lasting interest, to both applied scientists and engineers alike.
The Boundary Theory of Phase Diagrams and Its Application Rules for Phase Diagram Construction with Phase Regions and Their Boundaries presents a novel theory of phase diagrams. Thoroughly revised on the basis of the Chinese edition and rigorously reviewed, this book inspects the general feature and structure of phase diagrams and reveals that there actually exist two categories of boundaries. This innovative boundary theory has solved many difficulties in understanding phase diagrams and also finds its application in constructing multi-component phase diagrams or in calculating high-pressure phase diagrams. Researchers and engineers as well as graduate students in the areas of chemistry, metallurgy, and materials science will benefit from this book. Prof. Muyu Zhao was the recipient of the 1998 Prize for Progress in Science and Technology for his work on the boundary theory of phase diagrams awarded by the National Commission of Education, China, and many other prizes.
Preface

Comment

Introduction

Part One

The Phase Rule, Its Deduction and Application

Chapter 1

The Phase Rule, Its Deduction and Application

1.1 Why do We Discuss the Phase Rule at First?

1.2 Different Methods for Deducing the Phase Rule: The Method of Gibbs Himself, Gibbs-Roozeboom's Method and the Method of Gibbs Free Energy Minimization

1.3 Determination of the Number of Independent Components by Brinkley's Method

1.4 Some Remarks on the Application of the Phase Rule

References

Summary of Part One

Part Two

The Boundary Theory of Isobaric Phase Diagrams

Chapter 2

The Boundary Theory of Isobaric Phase Diagrams—Rules for Phase Diagram Construction

2.1 Introduction

2.2 Several Basic Concepts for Underlying the Phase Diagram

2.3 The Theorem of the Corresponding Relationship between the Total Number of All the Different Phases in NPRs and the Dimensions of the Phase Boundary R1 in Phase Diagrams, and Its Theoretical Deduction

2.4 The Theorem of the Corresponding Relationship (TCR) is an Independent Theorem, Not a Variant of the Phase Rule

2.5 Corollaries of TCR for Isobaric Phase Diagrams

2.6 The Relationship between the Dimensions of the Phase Boundary R1 and the Dimensions of the Boundary R1' for Isobaric Multicomponent Phase Diagrams

2.7 The Summary of the Boundary Theory of Isobaric Phase Diagrams

References

Chapter 3

Application of the Boundary Theory to Unary, Binary and Ternary Phase Diagrams

3.1 Determination of Phase Assemblages of NPRs and the Characteristics of Their Boundaries by the Boundary Theory

3.2 Application of the Boundary Theory to Unary Phase Diagrams

3.3 Application of the Boundary Theory to Binary Phase Diagrams

3.4 Application of the Boundary Theory to Ternary Phase Diagrams

3.5 Explanation of Rhines' Ten Empirical Rules for Constructing Complicated Ternary Phase Diagrams with the Boundary Theory

3.6 Comparison of the Boundary Theory and the P-L's Contact Rule of Phase Regions

References

Chapter 4

The Application of the Boundary Theory of Phase Diagrams to the Quaternary and Higher Number Components

4.1 Introduction

4.2 The Relationship among NPRs and their Boundaries in a Typical, Iso-baric, Quaternary Phase Diagram

4.3 During Temperature Decreasing, Some Cases of Variations of the NPRs and their Boundaries, May be Encountered for Several Types of Quaternary Isothermal Sections

4.4 The Relationship among Neighboring Phase Regions and their Boundaries in Isobaric Isothermal Multicomponent Sections

4.5 Summary of Part Two

Part Three

The Boundary Theory and Calculation of High Pressure Phase Diagrams

Chapter 8

The Boundary Theory for p-T-xi Multicomponent Phase Diagrams

8.1 Introduction

8.2 The Theorem of Corresponding Relationship for p-T-xi Multicomponent Phase Diagrams and its Corollaries

8.3 The Relationship between R1 and R1 in p-T-xi Multicomponent Phase Diagrams

8.4 The Relationship among NPRs and their Boundaries for the p-T-xi Phase Diagram

References

Summary of Part Three
Ternary Phase Diagram

8.6 The Application of Boundary Theory for Quaternary p-T-xi Phase Diagrams

8.7 The Reliability of the Boundary Theory of Multicomponent p-T-xi Phase Diagrams

References 8

Chapter 9

The Calculation of Unary High-Pressure Phase Diagrams and the Boundary Theory of p-T Phase Diagrams of Multicomponent Systems

9.1 Introduction

9.2 Calculation of Unary p-T Diagrams

9.3 The Boundary Theory of p-T Phase Diagrams of Multicomponent Systems without Composition Variable

References 9

Chapter 10

Calculation of Binary High-Pressure Phase Diagrams

10.1 Principles for the Calculation of Binary Phase Diagrams at Elevated Pressures

10.2 Calculation of the Standard Molar Gibbs Free Energy for the Pure Components

10.3 Calculation of Activity Coefficients \(i = T, p, x \) of the \(i \)-th Component in the Equilibrium Phases

10.4 Partial Molar Volumes

10.5 Some Remarks on the Values of \(a \) and \(\beta \)

10.6 Example Calculation of the Cd-Pb Phase Diagram at High Pressure

References 10

Chapter 11

Calculation of High-Pressure Ternary Phase Diagrams

11.1 The Characteristics of the Boundaries of the High-Pressure Ternary Phase Diagrams, and the Basic Equations for Their Calculation

11.2 The Treatment of Thermodynamic Parameters for Ternary Systems at High Pressure

11.3 Verification of the Estimation Method for the Excess Molar Volume by Experiment

11.4 The Calculation of High-Pressure Phase Diagrams of Cd-Pb-Sn and Cd-Sn-Zn Systems

11.5 Verification of Calculated High-Pressure Ternary Phase Diagrams through Experimental Determination

11.6 The Comparison between the Methods of Experimental Determination and Thermodynamic Calculation of High Pressure Phase Diagrams

References 11

Summary of Part Three

References of This Book

Important Symbols

Index

Annex
Chapter 1 The Phase Rule, Its Deduction and Application

1.1 Why do We Discuss the Phase Rule at First

The Gibbs phase rule is now a long established principle of Chemistry, very well known by all physical chemists and materials scientists. So, why do we still need to write a chapter to discuss this classic, fundamental law of Chemical science, at the outset of this treatise?

Textbooks, as published for the explanation of physical chemistry and the use of phase diagrams, usually present only a simple method for the "deduction" of the phase rule. However, the original "rule" as deduced by Gibbs himself, is both strict and well thought-out, indeed students can learn much from his method. The Gibbs-Roozeboom's method, though simple, is, nevertheless, full of wisdom. The deduction of the phase rule under the circumstance, involving particular chemical reactions, by application of the mathematic method of Gibbs free energy minimization, is today, only presented in a few monographs. By means of this method however, both the phase rule, and the law of mass action used for the chemical equilibrium, are successfully deduced. This is indeed a very interesting circumstance.

When applying the phase rule, an important and difficult problem to treat is the determination of the number of independent components involved. Generally, ordinary Physical Chemistry texts only present Jouguet's method for the deduction of this number and do not discuss either the strengths or the shortcomings, of this method. Here, we present another useful approach, i.e. that of the Brinkley's method and these two methods will be shortly compared in detail.

The application of the phase rule is generally not a very easy task, so here we will also address some brief remarks to the resolution of this problem. Usually, we apply the phase rule and then discuss the differences between the phase rule predictions and our theory, as set out in detail in Chapter 2. Therefore, at first, a special introductory chapter is now provided, being devoted to a discussion of the phase rule.