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This book applies the deductive method to programming by affiliating programs with the abstract mathematical
theories that enable them to work. Specification of these theories, algorithms written in terms of these theories, and
theorems and lemmas describing their properties are presented together. The implementation of the algorithms in a
real programming language is central to the book. While the specifications, which are addressed to human beings,
should, and even must, combine rigor with appropriate informality, the code, which is addressed to the computer,
must be absolutely precise even while being general. As with other areas of science and engineering, the appropriate
foundation of programming is the deductive method. It facilitates the decomposition of complex systems into
components with mathematically specified behavior. That, in turn, is a necessary precondition for designing
efficient, reliable, secure, and economical software. The book is addressed to those who want a deeper
understanding of program- ming, whether they are full-time software developers, or scientists and engineers for
whom programming is an important part of their professional activity. The book is intended to be read from
beginning to end. Only by reading the code, proving the lemmas, and doing the exercises can readers gain
understanding of the material. In addition, we suggest several projects, some open-ended. While the book is terse, a
careful reader will eventually see the connections between its parts and the reasons for our choice of material.
Discovering the architectural principles of the book should be the reader’s goal. We assume an ability to do
elementary algebraic manipulations, | We also assume familiarity with the basic vocabulary of logic and set theory at
the level of undergrad- uate courses on discrete mathematics; Appendix A summarizes the notation that we use.
We provide definitions of a few concepts of abstract algebra when they are needed to specify algorithms. We
assume programming maturity and understanding of computer architecture2 and fundamental algorithms and data
structures) We chose C++ because it combines powerful abstraction facilities with faithful representation of the
underlying machine) We use a small subset of the language and write requirements as structured comments. We
hope that readers not already familiar with C++ are able to follow the book. Appendix B specifies the subset of the
language used in the book? Wherever there is a difference between mathematical notation and C++, the typesetting
and the context determine whether the mathe- matical or C++ meaning applies. While many concepts and
programs in the book have parallels in STL (the C++ Standard Template Library), the book departs from some of
the STL design decisions. The book also ignores issues that a real library, such as STL, has to address: namespaces,
visibility, inline directives, and so on. Chapter 1 describes values, objects, types, procedures, and concepts.
Chapters 2-5 describe algorithms on algebraic structures, such as semigroups and totally ordered sets. Chapters
6-11 describe algorithms on abstractions of memory. Chapter 12 describes objects containing other objects. The
Afterword presents our reflections on the approach presented by the book.
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(0 O O An object is passed directly flit is passed as an argument or returned as the resultand is passed indirectly if it
is passed via a pointer or pointerlike object. An object isan input to a procedure if it is read, but not modified, by
the procedure. An object isan output from a procedure if it is written, created, or destroyed by the procedure,but its
initial state is not read by the procedure. An object is an input~output of aprocedure if it is modified as well as read
by the procedure.A computational basis for a type is a finite set of procedures that enable theconstruction of any
other procedure on the type. A basis is efficient if and onlyif any procedure implemented using it is as efficient as an
equivalent procedurewritten in terms of an alternative basis. For example, a basis for unsigned k-bitintegers
providing only zero, equality, and the successor function is not efficient,since the complexity of addition in terms
of successor is exponential in K.A basis is expressive if and only if it allows compact and convenient definitionsof
procedures on the type. In particular, all the common mathematical operationsneed to be provided when they are
appropriate. For example, subtraction could beimplemented using negation and addition but should be included
in an expressivebasis. Similarly, negation could be implemented using subtraction and zero butshould be included
in an expressive basis.
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