0000 O, tushu007.com
<O QO00d0oods>>

gobooo

Jdd<<googd>>

1300 ISBNUO O 0 9787111300274

1000 ISBNO 10 10 7111300270
Uodogdo2010
gooooboooogooao

0 O O Alexander Stepanov,Paul McJones
000262

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 0O, tushu007.com
<O gdogdn>>

gd

This book applies the deductive method to programming by affiliating programs with the abstract mathematical
theories that enable them to work. Specification of these theories, algorithms written in terms of these theories, and
theorems and lemmas describing their properties are presented together. The implementation of the algorithms in a
real programming language is central to the book. While the specifications, which are addressed to human beings,
should, and even must, combine rigor with appropriate informality, the code, which is addressed to the computer,
must be absolutely precise even while being general. As with other areas of science and engineering, the appropriate
foundation of programming is the deductive method. It facilitates the decomposition of complex systems into
components with mathematically specified behavior. That, in turn, is a necessary precondition for designing
efficient, reliable, secure, and economical software. The book is addressed to those who want a deeper
understanding of program- ming, whether they are full-time software developers, or scientists and engineers for
whom programming is an important part of their professional activity. The book is intended to be read from
beginning to end. Only by reading the code, proving the lemmas, and doing the exercises can readers gain
understanding of the material. In addition, we suggest several projects, some open-ended. While the book is terse, a
careful reader will eventually see the connections between its parts and the reasons for our choice of material.
Discovering the architectural principles of the book should be the reader’s goal. We assume an ability to do
elementary algebraic manipulations, | We also assume familiarity with the basic vocabulary of logic and set theory at
the level of undergrad- uate courses on discrete mathematics; Appendix A summarizes the notation that we use.
We provide definitions of a few concepts of abstract algebra when they are needed to specify algorithms. We
assume programming maturity and understanding of computer architecture2 and fundamental algorithms and data
structures) We chose C++ because it combines powerful abstraction facilities with faithful representation of the
underlying machine) We use a small subset of the language and write requirements as structured comments. We
hope that readers not already familiar with C++ are able to follow the book. Appendix B specifies the subset of the
language used in the book? Wherever there is a difference between mathematical notation and C++, the typesetting
and the context determine whether the mathe- matical or C++ meaning applies. While many concepts and
programs in the book have parallels in STL (the C++ Standard Template Library), the book departs from some of
the STL design decisions. The book also ignores issues that a real library, such as STL, has to address: namespaces,
visibility, inline directives, and so on. Chapter 1 describes values, objects, types, procedures, and concepts.
Chapters 2-5 describe algorithms on algebraic structures, such as semigroups and totally ordered sets. Chapters
6-11 describe algorithms on abstractions of memory. Chapter 12 describes objects containing other objects. The
Afterword presents our reflections on the approach presented by the book.

Page 2

0000 0O, tushu007.com
<O QO00d0oods>>

goon

gbooboooobooboobobuooboon
gbooboobooboobbooboobbooboobboobooono
Oooooobooboooo@e++y)boooooooooobooonooooboo
gboooboboobooboboobooboboobooboo
gooobobooboobboobuoobbuooboon
oooobooboooboobboobdoobobobobuoobboobuooboon
obooboboooboobbooobuoobboobobuooboon
oboodboboooboobbooboobbooboobboobuoobobooo
oooobobooboobbooobooboobobooboobobooboobDbooboobo
O0o0ooboobooboboobooon

oo0odboboooboobooobooboooo
OO00000000@OoboooOwWebO D)OOC++O0 OO DOOO0OODOODODOO0OO0DOODOOO
ooooooooo
0000000000000 0O0D0DOO0O Sean Parentld Bjarne Stroustrupd O 0O 0O 0O O
ooooboboooboobooooboobooobooboooDboobDoobDbooboooo
ooooboboooboobooooboobooobooboooDboobDoobDbooboooo
gboooboooobogboooo

Page 3

0000 0O, tushu007.com
<O QO00d0oods>>

goon

Alexander Stepanov] 19670 19720 DO OO0 O0O00OO0OOODOO20 000000197700 00O
Ooooooobobon

Ooo0oobobobobobobogoooooo

O00000000D00ODODODUOGED Polytechnicd AT&TO O O O Silicon Graphics O [0 O 2002
00 0Adobe OO O

19950 0C+000000000Dr.DobbO O OOODOOOOOO

Paul Mclones[] 196701 19710 0 0000000 0OOODOOOOOOO

70 doboobooooboobuoobobooboobboobuoobobooboobDbOon
0000000

000000000 IIBMO XeroxD Tandemd DECL O 0 20030 U O OO Adobed OO0 O

19820 000000000 0O0O" The Recovery Manager of the System R Database Manager” [[0 ACMO
OO000000oooooo

Page 4

0000 0O, tushu007.com
<O gdogdn>>

good

Preface ix AbouttheAuthors xiii 1 Foundations [1.1 Categoriesofldeas:Entity,Species,Genus [1.2 Values [1.3
Objects [1.4 rocedures6 [1 1.5 RegularTypes [0 1.6 RegularProcedures [1 1.7 Concepts [1 1.8 Conclusions14 2
Transformationsand TheirOrbits1 [2.1 Transformations [2.2 Orbits [J 2.3 CollisionPoint [J 2.4
MeasuringOrbitSizes [1 2.5 Actions [1 2.6 Conclusions 3 AssociativeOperations [3.1 Associativity [3.2
ComputingPowers [3.3 ProgramTransformations [3.4 Special-CaseProcedures [1 3.5
ParameterizingAlgorithms [3.6 LinearRecurrences [1 3.7 AccumulationProcedures [1 3.8 Conclusions 4
LinearOrderings [4.1 Classi?cationofRelations [4.2 TotalandWeakOrderings [4.3 OrderSelection [4.4
NaturalTotalOrdering [4.5 ClustersofDerivedProcedures [1 4.6 ExtendingOrder-SelectionProcedures [4.7
Conclusions 5 OrderedAlgebraicStructures [5.1 BasicAlgebraicStructures [5.2 OrderedAlgebraicStructures

[J 5.3 Remainder [5.4 GreatestCommonDivisor [5.5 Generalizinggced [5.6 Steinged [J 5.7 Quotient [1 5.8
QuotientandRemainderforNegativeQuantities [J 5.9 ConceptsandTheirModels [0 5.10 ComputerintegerTypes
(1 5.11 Conclusions 6 Iterators [1 6.1 Readability [1 6.2 Iterators [6.3 Ranges [J 6.4 ReadableRanges

[6.5IncreasingRanges [J 6.6 Forwardlterators [J 6.7 Indexedlterators [J 6.8 Bidirectionallterators O 6.9
Random-Accesslterators [6.1 Conclusions 7 CoordinateStructures [7.1 ifurcateCoordinates [7.2
BidirectionalBifurcateCoordinates [1 7.3 CoordinateStructures [7.4 Isomorphism,Equivalence,andOrdering

1 7.5 Conclusions 8 CoordinateswithMutableSuccessors [8.1 Linkedlterators [1 8.2 LinkRearrangements

[J 8.3 ApplicationsofLinkRearrangements [J 8.4 LinkedBifurcateCoordinates [J 8.5 Conclusions9 Copying [9.1
Writability 0 9.2 Position-BasedCopying [1 9.3 Predicate-BasedCopying [9.4 SwappingRanges [9.5
Conclusions 10 Rearrangements [1 10.1 Permutations [10.2 Rearrangements [10.3 ReverseAlgorithms [10.4
RotateAlgorithms [0 10.5 AlgorithmSelection [0 10.6 Conclusions 11 PartitionandMerging [11.1 Partition

[0 11.2 BalancedReduction [11.3 Merging [1 11.4 Conclusions 12 CompositeObjects [1 12.1
SimpleCompositeObjects [12.2 DynamicSequences [12.3 UnderlyingType [0 12.4 Conclusions Afterword
AppendixA MathematicalNotation AppendixB ProgrammingLanguage B.1 LanguageDe?nition B.2
MacrosandTraitStructures Bibliography Index

Page 5

0000 0O, tushu007.com
<O gdogdn>>

good

(0 O O An object is passed directly flit is passed as an argument or returned as the resultand is passed indirectly if it
is passed via a pointer or pointerlike object. An object isan input to a procedure if it is read, but not modified, by
the procedure. An object isan output from a procedure if it is written, created, or destroyed by the procedure,but its
initial state is not read by the procedure. An object is an input~output of aprocedure if it is modified as well as read
by the procedure.A computational basis for a type is a finite set of procedures that enable theconstruction of any
other procedure on the type. A basis is efficient if and onlyif any procedure implemented using it is as efficient as an
equivalent procedurewritten in terms of an alternative basis. For example, a basis for unsigned k-bitintegers
providing only zero, equality, and the successor function is not efficient,since the complexity of addition in terms
of successor is exponential in K.A basis is expressive if and only if it allows compact and convenient definitionsof
procedures on the type. In particular, all the common mathematical operationsneed to be provided when they are
appropriate. For example, subtraction could beimplemented using negation and addition but should be included
in an expressivebasis. Similarly, negation could be implemented using subtraction and zero butshould be included
in an expressive basis.

Page 6

0000 0O, tushu007.com
<O QO00d0oods>>

gobooooo

“gbo0ob0b0oboboboboooUoboboobUobU0obOobOobDUbDOobDUooboon
oooooos ooooor o
oooooboboboboboooboooboooooboobobobobDobDobDooooboboD
ocoooobooboboboboooooboooooboobUobOobobDobLDooDooooboboD
OO0o000ob0oboboboboboobooooooon

OO00o000oboOoboboboog

OOAdobeD D0 00O0O0O0OODOODODODOODODODOOOOOODOODODODODODODO
O
O0000b00obobOobOobgoboooDooOooboobUobOobOobDoboDooDoooobooboo
oooogo

" O0O——MartinNewell Adobe D 0" DOO0OODOOODOO0OOOOODOO

" O 0O——aBjarneStroustrup C++ 0 00O DOOOOOAxOODOODODO

O OSilicon GraphicsD CTOO D OO0 000D OO0ODO0OOOO0DOOO0DDOOO0OOOOoOobDooooon
Oo0000

" [0 O ——rForest Baskettt [J [0 O O New Enterprise Associates” Paull D 00O DO O000O0O0OO0DOO0O
O0AxDOODODODOOODO0ODOO0OODDOO00DOD0—>o00ooog

" 00O ——Robert W. Taylor] Xerox PARCCSLUDECO OO ODOOOOO

Page 7

0000 O, tushu007.com
<O QO00d0oods>>

goon

oooooo@uoo)ydooooooo

Page 8

0000 O, tushu007.com
<O QO00d0oods>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 9

