<<数控加工编程与操作>>

图书基本信息

书名:<<数控加工编程与操作>>

13位ISBN编号:9787111346975

10位ISBN编号:7111346971

出版时间:2011-8

出版时间:机械工业出版社

作者: 李河水^龚建国 编

页数:255

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<数控加工编程与操作>>

内容概要

《数控加工编程与操作》主要介绍数控车床、数控铣床及加工中心的使用、零件加工工艺制订、 数控编程及机床操作相关知识。

采用理实一体化教学思路设计教学模式。

围绕典型零件,按照完成_丁作任务所需要的知识组织教学内容。

《数控加工编程与操作》共十六项学习任务,其中数控车削安排五项任务,数控铣削安排六项任务、加工中心安排五项任务。

每种机型的前几项任务按中级工职业标准要求编写,后一至两项任务按高级工职业标准要求编写,内 容由浅人深、循序渐进。

《数控加工编程与操作》理论联系实际,内容丰富翔实,有较高的实用价值。

《数控加工编程与操作》可用作高职与技工学校数控技术、模具设计与制造及机电一体化技术等专业 ,以及成人教育、各类数控编程与操作培训班的教材,也可作为从事数控技术研究、开发的工程技术 人员的参考用书。

<<数控加工编程与操作>>

书籍目录

前言项目一 数控车削编程与加工任务一 数控车床认识与操作一、任务导入(一)任务描述(二) 知识目标(三)能力目标二、知识准备(一)数控车床概述(二)FANUC0i-T数控车床操作面板简介 三、方案设计四、任务实施(一)开机操作(二)手动回参考点(三)输入程序(四)装夹工件(五) 刀具的选择与安装(六)一把刀的对刀(七)程序校验(八)自动加工(九)关机五、检查评估六 技能训练任务二 使用简单指令的编程与加工一、任务导入(一)任务描述(二)知识目标(三) 能力目标二、知识准备(一)数控编程基础知识(二)粗加工进给路线设计方法(三)数控车削编程 特点(四)数控车削编程时的注意事项(五)数控车削简单G指令(六)M指令(七)数控车床刀具 补偿功能(八)多把刀的对刀三、方案设计(一)分析零件图(二)选择机床与夹具(三)制订加工 方案(四)选择刀具及切削用量(五)确定编程原点(六)设计毛坯粗加T的进给路线(七)坐标点 的计算四、任务实施(一)编写零件的加工程序(二)零件的加工五、检查评估六、技能训练任务三 使用单一固定循环指令的编程与加工一、任务导入(一)任务描述(二)知识目标(三)能力目标 二、知识准备(一)套类零件的加工方案(二)数控车削孔类刀具介绍(三)单一固定循环指令(四)螺纹切削参数的确定三、方案设计(一)分析零件图(二)制订加工方案(三)选择刀具与切削用 量(四)确定编程原点(五)确定毛坯粗加工的方法(六)数学处理四、任务实施(一)编写零件加 工程序(二)零件的加工五、检查评估六、技能训练任务四 使用复合固定循环指令的编程与加工一 、任务导入(一)任务描述(二)知识目标(三)能力目标二、知识准备(一)数控车削工艺知识(二)复合固定循环指令三、方案设计(一)分析零件图(二)制订加工方案(三)选择刀具与切削用 量(四)确定编程原点(五)确定毛坯粗加工的方法(六)数学处理四、任务实施(一)编写零件加 工程序(二)零件的加工五、检查评估六、技能训练任务五 使用宏程序的编程与加工一、任务导入 (一)任务描述(二)知识目标(三)能力目标二、知识准备(一)刀尖圆弧半径补偿(二)宏程序 编程三、方案设计(一)分析零件图(二)制订加工方案(三)选择刀具及切削用量(四)确定编程 原点四、任务实施(一)编写零件加工程序(二)零件的加工五、检查评估六、技能训练练习思考题 一、选择题二、编程题项目二 数控铣削编程与加工任务一 数控铣床认识与操作一、任务导入(一)任务描述 (二)知识目标 (三)能力目标二、知识准备 (一)数控铣床的结构 (二)数控铣床的维 护保养(三)数控铣床的分类(四)数控铣床的加工对象(五)华中系统数控铣床的控制面板三、方 案设计四、任务实施(一)开机(二)回参考点(三)设定主轴转速(四)编辑程序(五)工件的装 夹 (六) 刀具的安装 (七) 对刀 (八) 程序校验与首件试切 (九) 工件加工 (十) 关机五、检查评估 六、技能训练任务二 以平面和外轮廓为主的板类零件的编程与加工一、任务导入(一)任务描述(二)知识目标(三)能力目标二、知识准备(一)数控铣床的坐标系(二)平面与外轮廓铣削加工方 案的设计(三)华中数控铣系统基本编程指令(四)子程序三、方案设计(一)分析零件图(二)选 择机床与夹具(三)制订加工方案(四)设计进给路线(五)选择刀具与切削用量(六)确定编程原 点四、任务实施(一)编写零件加工程序(二)零件的加工(三)设备维护与保养五、检查评估六、 技能训练任务三 以孔为主的盖板类零件的编程与加工一、任务导入(一)任务描述(二)知识目标 (三)能力目标二、知识准备(一)子L的加工方法(二)孔加工进给路线的确定(三)孔加工用刀 具及切削用量的选择(四)孔加工固定循环指令三、方案设计(一)分析零件图(二)选择机床及夹 具(三)确定工件坐标系(四)制订加工方案(五)选择刀具与切削用量四、任务实施(一)编写零 件加工程序(二)零件的加工五、检查评估六、技能训练任务四 槽类零件的编程与加工一、任务导 入(一)任务描述(二)知识目标(三)能力目标二、知识准备(一)型腔槽类零件的加工方法(二)型腔槽类零件加工刀具的选择(三)SINUMERIK802S系统基本指令与挖槽循环指令三、方案设计(一)分析零件图(二)选择机床(三)选择夹具(四)制订加工方案(五)选择刀具与切削用量(六)确定编程原点四、任务实施(一)编写零件加工程序(二)零件的加工五、检查评估六、技能训练 任务五 具有对称轮廓的零件的编程与加工一、任务导入(一)任务描述(二)知识目标(三)能力 目标二、知识准备(-)镜像功能指令G24、G25(-)图形旋转指令G68、G69三、方案设计(-)分析零件图(二)选择机床和夹具(三)确定工步(四)选择刀具与切削用量(五)设计刀具进给路 线(六)确定编程原点及编程思路四、任务实施(一)编写零件加工程序(二)零件的加工五、检查

<<数控加工编程与操作>>

评估六、技能训练任务六 具有非圆曲线轮廓的零件的编程与加工一、任务导入(一)任务描述(二)知识目标(三)能力目标二、知识准备(一)计算参数R(二)标记符(三)绝对跳转(四)有条 件跳转三、方案设计(一)分析零件图(二)选择机床(三)选择夹具(四)制订加工方案(五)选 择刀具及切削用量(六)确定编程原点与编程思路四、任务实施(一)编写零件加工程序(二)零件 的加工五、检查评估六、技能训练练习思考题一、选择题二、问答题三、编程题项目三 加工中心的 编程与加工任务一 加工中心认识与操作一、任务导入(一)任务描述(二)知识目标(三)能力目 标二、知识准备(一)加工中心的分类(二)加工中心的组成(三)加工中心的结构特点(四)数控 系统操作面板和机床操作面板三、方案设计四、任务实施(一)开机(二)返回参考点(三)首次转 动主轴(四)程序的输入与编辑(五)工件的装夹(六)刀具的安装(七)刀库操作(八)对刀(九)刀具半径补偿的输入与修改(十)自动加工(十一)零件的检测(十二)关机(十三)去毛刺五、 检查评估六、技能训练任务二 配合件的编程与加工一、任务导入(一)任务描述(二)知识目标(三)能力目标二、知识准名(一)工艺基础部分(二)编程基础部分三、方案设计(一)机床及夹具 的选择(二)毛坯尺寸及精度(三)确定工件坐标系(四)设计加工方案四、任务实施(一)编写零 件加工程序(二)零件的加工五、检查评估六、技能训练任务三 薄壁件的编程与加工一、任务导入 (一)任务描述(二)知识目标(三)能力目标二、知识准备(一)镜像功能指令(G51.1、G50.1)(二)坐标系旋转指令(G68、G69)(三)极坐标指令(G16、G15)三、方案设计(一)选择机 床及夹具(二)毛坯尺寸及精度(三)确定工件坐标系(四)设计加工方案四、任务实施(一)编写 零件加工程序(二)零件的加工五、检查评估六、技能训练任务四 箱体类零件的编程与加工一、任 务导入(一)任务描述(二)知识目标(三)能力目标二、知识准备(一)箱体类零件的编程(二) 箱体零件的定位与调整三、方案设计(一)分析零件图(二)制订零件加工工艺方案(三)安排加工 中心工序(四)选择刀具及切削用量(五)确定编程原点四、任务实施(一)编写零件加工程序(二)零件的加工五、检查评估任务五 零件的自动编程与加工一、任务导入(一)任务描述(二)知识 目标(三)能力目标二、知识准备(一)CAXA制造工程师软件界面简介(二)扫面线粗加工(三) 扫面线精加工三、方案设计(一)分析零件图(二)选择机床类型(三)选择夹具(四)制订加工方 案(五)确定刀具及切削用量(六)确定编程原点四、任务实施(一)生成轨迹(二)传输程序(三)加工中心操作及加工五、检查评估六、技能训练练习思考题一、选择题二、编程题参考文献

<<数控加工编程与操作>>

编辑推荐

现代机械制造离不开数控加工,数控加工编程与操作是机械类专业的学生必须掌握的一门技能课

李河水、龚建国主编的《数控加工编程与操作》打破了传统的编书模式,采用项目式教学法,精选教学案例,采用教学做合一、理实一体化的教学思路组织、安排教学内容。

在内容安排上遵循了从简单到复杂、从易到难的规律,符合正常的认知规律,例如,对每种机型的机床都是先安排了认识与操作实训,然后是基本编程指令学习、固定循环指令学习,最后是宏程序学习;从零件角度考虑同样遵循了由简单到复杂的规律,先是简单的直线、圆弧轮廓,然后是非圆曲线轮廓,最后是综合件、配合件的加工。

本书内容分数控车削、数控铣削和加工中心三大模块,其中数控车削的相关内容采用FANUC系统;数控铣削的相关内容主要以华中数控系统为主(任务一至三),西门子数控系统为辅(任务四至六);加工中心的相关内容采用FANUC数控系统。

<<数控加工编程与操作>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com