<<电厂锅炉设备及运行维护>>

图书基本信息

书名:<<电厂锅炉设备及运行维护>>

13位ISBN编号: 9787111383345

10位ISBN编号:7111383346

出版时间:2012-8

出版时间:机械工业出版社

作者: 冯德群 编

页数:382

字数:601000

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<电厂锅炉设备及运行维护>>

内容概要

本书是针对高职高专教育的需要,以当前电厂大机组燃煤锅炉设备及运行为对象而编写的,主要内容包括:电站锅炉的类型、燃料、汽包锅炉的本体设备及系统、锅炉辅助设备及系统、汽包锅炉的起动和停运、汽包锅炉的运行调节、超临界直流锅炉设备及运行调节、循环流化床锅炉设备及运行调节、锅炉试验、锅炉运行故障及其防治。

本书可作为高职高专电力技术类火电厂集控运行、电厂热能动力装置专业的教材,也可作为现场运行、检修人员的岗位培训教材。

<<电厂锅炉设备及运行维护>>

书籍目录

則古	
第一章	电站锅炉的类型
第一节	电站锅炉的构成及工作过程
第二节	电站锅炉的规范及安全经济技术指标
第三节	锅炉的分类及特点
第二章	炒大米斗
第一节	燃煤的成分及其特性
第二节	点火及助燃用燃料
第三节	燃料的燃烧计算
第四节	锅炉机组热平衡
第三章	汽包锅炉的本体设备及系统
第一节	给水系统及省煤器
第二节	蒸发系统
第三节	过热蒸汽系统和再热蒸汽系统
第四节	燃烧与燃烧设备
第五节	点火系统
第六节	空气预热器
第七节	锅炉的整体布置
第四章	锅炉辅助设备及系统
第一节	制粉系统
第二节	风烟系统
第三节	吹灰系统
第四节	电除尘器
第五节	
第六节	除渣系统
第七节	你這家就 石灰石一石膏湿法烟气脱硫系统
第五章	汽包锅炉的启动和停运
第一节	汽包锅炉的启动 汽包锅炉的启动
第二节	锅炉启动过程的安全保护
第三节	汽包锅炉的停运与保养
第六章	7.10锅从的停运与保护 汽包锅炉的运行调节
第一节	, 1.0 锅水的运行。 汽包锅炉的变工况运行特性
第二节	汽包锅炉的蒸汽压力调节 汽包锅炉的蒸汽压力调节
第三节	, 1.0 锅炉的蒸汽温力调节 汽包锅炉的蒸汽温度调节
第四节	7.00极大的黑儿温度调节 汽包水位调节
第五节	八色尔位调节 煤粉锅炉的燃烧调节
第七章	超临界直流锅炉设备及运行调节
第一节	にはいる。 直流锅炉
第二节	超临界锅炉的启动特性
第三节	强制流动特性
第四节	直流锅炉的运行特性
第五节	直流锅炉的运行调节
第八章	循环流化床锅炉设备及运行调节
第一节	循环流化床锅炉系统及组成

第二节 循环流化床锅炉中煤颗粒的燃烧过程

第一图书网, tushu007.com <<电厂锅炉设备及运行维护>>

第三节 循环流化床锅炉的燃烧室与布风装置
第四节 循环流化床锅炉的物料循环系统
第五节 循环流化床锅炉的点火装置
第六节 循环流化床锅炉的给料系统
第七节 循环流化床锅炉的风烟系统
第八节 循环流化床锅炉的除渣、除灰系统
第九节 循环流化床锅炉的典型炉型
第十节 循环流化床锅炉的启动与停运
第十一节 循环流化床锅炉的运行调节
第十二节 循环流化床锅炉运行中的常见问题及处理方法
第九章 锅炉试验
第一节 辅机单体试运行
第二节 锅炉水压试验
第三节 锅炉的联锁及保护试验
第四节 锅炉冷态通风调节 试验
第五节 安全阀校验
第六节 锅炉蒸汽吹管
第七节 锅炉机组热平衡试验简介
第十章 锅炉运行故障及其防治
第一节 炉内结渣与防治
第二节 尾部受热面的积灰、磨损和低温腐蚀与防治
第三节 汽包锅炉水位事故
第四节 锅炉受热面损坏事故
第五节 锅炉燃烧事故
第六节 制粉系统常见故障
第七节 锅炉主要辅机常见故障

参考文献

<<电厂锅炉设备及运行维护>>

章节摘录

版权页: 插图: 第二章燃料燃料通常是指在燃烧时能够放出大量热量的物质。

燃料的种类很多,按其物理形态分为固体燃料、液体燃料和气体燃料。

电厂锅炉运行的安全性、经济性与燃料的性质有密切的关系,对锅炉运行人员来说,了解燃料的组成成分、性质及其对锅炉工作的影响具有十分重要的意义。

第一节燃煤的成分及其特性 我国煤炭储量极为丰富,煤是电厂锅炉的主要燃料,我国的燃料政策规定电厂锅炉尽量选用当地劣质燃料,即选用燃烧比较困难,除燃烧放热可供利用外,在其他方面(冶金、化学等方面)没有更大经济价值的燃料;选用电厂当地的燃料是为了减少燃料的运输成本。 煤是一种化石燃料,来源于古代植物。

由于地壳的变迁,地面植物残骸被长期深埋在地层深处,在高温、高压及缺氧的条件下,原有机物不断分解化合,最终形成了煤。

煤是由有机化合物和无机矿物质等组成的一种复杂物质。

为了使用方便,可按元素分析法和工业分析法研究煤的组成和性质。

一、煤的元素分析成分及性质 用化学分析方法对煤中所含的化学成分进行全面测定称为元素分析。 经元素分析,煤中所含元素达三十几种。

一般将燃料中的不可燃矿物质都归入灰分,这样,煤中对燃烧有影响的成分包括:碳(C)、氢(H)、氧(O)、氮(N)、硫(S)五种元素和灰分(A)、水分(M)两种成分,其中碳、氢和部分硫是可燃成分,其余都是不可燃成分。

1.碳(C)碳是煤中主要的可燃元素,也是煤发热量的主要来源,煤中碳的质量分数一般约为40%~95%。

1kg碳完全燃烧生成二氧化碳(CO2),约放出32700kJ的热量。

1kg碳如果不完全燃烧生成一氧化碳(CO),只能放出9270kJ的热量。

煤中的碳一部分与氢、氧、氮和硫结合成挥发性有机化合物,其燃点较低、易着火;而其余呈单质状态的部分称为固定碳(游离碳)。

固定碳燃点高、不易点燃、燃烧缓慢、火苗短、难燃尽,但发热量大。

煤的地质年代越长,炭化程度越深,含碳量就越高,固定碳的含量相应也越多,点燃及燃烧就越困难 ,且火苗较短。

2.氢(H) 氢是煤中发热量最高的可燃元素,煤中氢元素含量不多,质量分数一般为3%~6%。

1kg氢完全燃烧生成水,能放出120000kJ的热量(扣除水的汽化潜热后剩余的热量)。

随着煤的炭化程度加深,氢的含量逐渐减少。

氢一部分与氧结合成为稳定的化合物,不能燃烧,另一部分存在于可燃有机物中,称为游离氢,这部 分氢极易点燃,燃烧迅速,火苗也较长。

因此,含氢量多的煤点燃及燃尽都较容易。

<<电厂锅炉设备及运行维护>>

编辑推荐

<<电厂锅炉设备及运行维护>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com