000 0O, tushu007.com
<«<OQ000O0000Oods>ss

gobooo

O00<<0O000O0ODOOOd>>

1300 ISBNUO O 0 9787302237617

1000 ISBNO O 10 7302237611

0dodoo2010-10

0000000 MarkAllenWeiss) 0000000 (2010-100 O)
gooodg

000961

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1



000 0O, tushu007.com
<«<OQ000O0000Oods>ss

gd

This book is designed for a two-semester sequence in computer science,beginning with what is typically known as
Data Structures and continuingwith advanced data structures and algorithm analysis. It is appropriate for
thecourses from both the two-course and three-course sequences in "B.1 Intro-ductory Tracks," as. outlined in the
final report of the Computing Curricula2001 project 0 CC2001C0 ——-a joint undertaking of the ACM and the
IEEE.The content of the Data Structures course has been evolving for sometime. Although there is some general
consensus concerning topic coverage,considerable disagreement still exists over the details. One uniformlyaccepted
topic is principles of software development, most notably the con-cepts of encapsulation and information hiding.
Algorithmically, all DataStructures courses tend to include an introduction to running-time analysis,recursion,
basic sorting algorithms, and elementary data structures. Many uni-versities offer an advanced course that covers
topics in data structures, algo-rithms, and running-time analysis at a higher level. The material in this texthas been
designed for use in both levels of courses, thus eliminating the needto purchase a second textbook.

Page 2



000 0O, tushu007.com
<«<OQ000O0000Oods>ss

goon

gobbobbbudoddblavad 0004 oooobobbbbbouooooon
gobbobbbuougogobobbbbbooooobobbobbouooooon
gobbbbbibddblval b ggo4aobobboogooobbbobbbuooooon
gobboobbbudoooobbobbbuooogobboobbuoooooon

Page 3



000004, tushu007.com
<«<OQ000O0000Oods>ss

goon

O00O0000000 Mark Allen WeissO

Page 4



000 0O, tushu007.com
<O00O00O00ogos>s

good

part one Tour of Javal primitive javal.l the general environment 41.2 the first program 51.2.1 comments 51.2.2
mai n 61.2.3 terminal output 61.3 primitive types 61.3.1 the primitive types 61.3.2 constants 71.3.3 declaration and
initialization of primitive typesl1.3.4 terminal input and output 81.4 basic operators 81.4.1 assignment operators
91.4.2 binary arithmetic operators 101.4.3 unary operators 101.4.4 type conversions 101.5 conditional statements
111.5.1 relational and equality operators1.5.2 logical operators 121.5.3 the if statement 131.5.4 the while statement
141.5.5 the for statement 141.5.6 the do statement 15 1.5.7 break and continue 161.5.8 the switch statement 171.5.9
the conditional operator 171.6 methods 181.6.1 overloading of method names 191.6.2 storage classes 20summary
20key concepts 20common errors 220n the internet 23exercises 23references 252 reference types2.1 whet is a
reference? 272.2 basics of objects and references 302.2.1 the dot operator (.) 302.2.2 declaration of objects 302.2.3
garbage collection 312.2.4 the meaning of = 322.2.5 parameter passing 332.2.6 the meaning of == 332.2.7 no
operator overloading for objects 342.3 strings 352.3.1 basics of string manipulation 352.3.2 string concatenation
352.3.3 comparing strings 362.3.4 other String methods 362.3.5 converting other types to strings 372.4 arrays
372.4.1 declaration. assignment and methods 382.4.2 dynamic array expansion 402.4.3 ArrayLi st 422.4.4
multidimensional arrays 452.4.5 command-line arguments 452.4.6 enhanced for loop 462.5 exception handling
472.5.1 processing exceptions 482.5.2 the finally clause 482.5.3 common exceptions 492.5.4 the throw and throws
clauses 512.6 input and output 512.6.1 basic stream operations 522.6.2 the Scanner type 532.6.3 sequential files
56summary 59key concepts 60common errors 61on the internet 62exercises 62references 683 objects and classes3.1
what is object-oriented programming? 693.2 a simple example 713.3 Javadoc 733.4 basic methods 763.4.1
constructors 763.4.2 mutators and accessors 763.4.3 output and toString 783.4.4 equals 783.4.5 main 783.5
example: using java.math.Biginteger 783.6 additional constructs 793.6.1 the this reference 813.6.2 the this
shorthand for constructors 823.6.3 the instanceof operator 823.6.4 instance members versus static members 833.6.5
static fields and methods 833.6.6 static initializers 863.7 example: Implementing a BigRational class 863.8 packages
903.8.1 the import directive 913.8.2 the package statement 933.8.3 the LASSPATH environment variable 943.8.4
package visibility rules 953.9 a design pattern: composite (pair) 95summary 96key concepts 97common errors
1000n the internet 100exercises 101references 1074 inheritance4.1 what is inheritance? 1104.1.1 creating new classes
1104.1.2 type compatibility 1154.1.3 dynamic dispatch and polymorphism 1164.1.4 inheritance hierarchies
1174.1.5 visibility rules 1174.1.6 the constructor and super 1184.1.7 final methods and classes 1194.1.8 overriding a
method 1214.1.9 type compatibility revisited 1214.1.10 compatibility of array types 1244.1.11 covariant return
types 1244.2 designing hierarchies 1254.2.1 abstract methods and classes 1264.2.2 designing for the future 1304.3
multiple inheritance 1314.4 the interface 1344.4.1 specifying an interface 1344.4.2 implementing an interface
1354.4.3 multiple interfaces 1354.4.4 interfaces are abstract classes 1361 [J part two Algorithms and Building
Blocks6 the collections api7 recursion8 sorting algorithms9 randomizationpart three Applications10 fun and
games11 stacks and compilers12 utilitiesd [

Page 5



000 0O, tushu007.com
<«<OQ000O0000Oods>ss

good

0 O O As discussed in Section 6.9, the priority queue supports the access and deletion ofthe minimum item with
findMi n and de] eteMi n, respectively. We could use a sim-ple linked list, performing insertions at the front in
constant time, but then findingand/or deleting the minimum would require a linear scan of the list. Alternatively,we
could insist that the list always be kept sorted. This condition makes the accessand deletion of the minimum cheap,
but then insertions would be linear.Another way of implementing priority queues is to use a binary searchtree.
which gives an O log N average running time for both operations. How-ever. a binary search tree is a poor
choice because the input is typically notsufficiently random. We could use a balanced search tree, but the
structuresshown in Chapter 19 are cumbersome to implement and lead to sluggish per-formance in practice. [I In
Chapter 22, however, we cover a data structure, thesplay tree. that has been shown empirically to be a good
alternative in somesituations.

Page 6



000 0O, tushu007.com
<«<OQ000O0000Oods>ss

goon

000000000 0@avad00)040)000)00000000000000000

Page 7



000 0O, tushu007.com
<«<OQ000O0000Oods>ss

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8



