先进功能材料力学

出版时间:2012-10  出版社:王彪 浙江大学出版社 (2012-09出版)  作者:王彪  页数:528  

内容概要

  This book is an attempt to tackle mainly the followingtwo proplems: (1) to analyze the effect of stress and deformation on the functionalproperties of the materials, and (2) to establish the quantitative models relatedwith the microstructural evolution. The general formulation will be developedfrom the detailed analyses of the separated examples.

书籍目录

1  Introduction2  Basic Solutions of Elastic and Electric Fields of Piezoelectric Materials with Inclusions and Defects2.1  The Coupled Differential Equations of Elastic and Electric Fields in Piezoelectric Solids2.1.1  Thermodynamic Framework2.1.2  Linear Constitutive Equations2.1.3  The Equation of Equlibrium2.1.4  The Basic Equations of a Static Electric Field2.1.5  Differential Equations for Piezoelectric Materials2.2  Boundary Conditions2.3  Solution Methods for Two-Dimensional Problems2.3.1  The Stroh Formalism for Piezoelectric Materials2.3.2  The Lekhnitskii Formalism for Piezoelectric Materials2.3.3  Conformal Transformation of the Core Function2.4  Basic Solutions for Two-Dimensional Problems2.4.1  Elliptical Cylindrical Inclusions in Piezoelectric Materials2.4.2  Cracks2.4.3  Dislocations and Line Charges2.5  Solution Methods for Three-Dimensional Problems2.5.1  Eigenstrains and Equivalent Inclusion Method2.5.2  Method of Fourier Integrals2.5.3  Method of Green's Function2.6  Basic Solution for Three-Dimensional Problems2.6.1  Ellipsoidal Inhomogeneous Inclusions2.6.2  Flat Elliptical Cracks2.6.3  Ellipsoidal Inhomogeneity Embedded in an Infinite Matrix when both Phases Undergo Eigenstrains2.6.4  Green's Function2.7  Remarks References3  Micromechanics Models of Piezoelectric and Ferroelectrie Composites3.1  Background3.2  Some Definitions3.3  Effective Material Constants of Piezoelectric Composites3.3.1  The Dilute Model3.3.2  The Self-Consistent Model3.3.3  The Mori-Tanaka Mean Field Model3.3.4  The Differential Model3.4  Energy Formulation of Ferroelectric Composites3.4.1  Elastic Strain Energy Density for Ferroelectric Composites3.4.2  Intrinsic Free Energy Density for Ferroelectric Composites3.4.3  Total Free Energy for Ferroelectric Composites with Spherical Inclusions3.5  Phase Diagrams3.5.1  Total Free Energy for Ferroelectric Composites with Spherical Inclusions and Equiaxed Strains3.5.2  Phase Diagrams and Total Polarizations3.6  Remarks Appendix A: Radon Transform References4  Determination of the Smallest Sizes of Ferroeleetric Nanodomains4.1  Introduction4.2  Electric Fields in Ferroelectric Thin Film4.2.1  General Expression of Electric Field of Ferroelectric Domain4.2.2  AFM-Induced Electric Field in Ferroelectric Thin Films4.3  Energy Expressions4.3.1  Energy Expression for 180~ Domain in a FerroelectricFilm Covered with Top and Bottom Electrodes4.3.2  Energy Expression for 180~ Domain in FerroelectricFilm Induced by an AFM Tip without the Top Electrode4.4  Driving Force and Evolution Equations of Domain Growth4.5  Stability Analysis4.6  RemarksAppendix B: Derivation of the Electric and Magnetic Field for a Growing 180° DomainReferences5  Size and Surface Effects of Phase Transition on Nanoferroelectrie Materials5.1  Introduction and Overview of Ferroelectrics in Nanoscale Dimensions5.1.1  Ferroelectric Thin Films in Nanoscale Dimensions5.1.2  Ferroelectric Tunneling Junctions and Capacitors in Nanoscale Dimensions5.1.3  Ferroelectric Multilayers in Nanoscale5.1.4  Ferroelectric Nanowires and Nanotubes5.1.5  Ferroelectric Nanograins or Nanoislands on Substrates5.2  Thermodynamic Modeling and Stability Analysis of Ferroelectric Systems5.2.1  Background of the Thermodynamic Modeling for Ferroeleclrics5.2.2  Electrostatics for Ferroelectrics5.2.3  Thermodynamics of Ferroelectrics5.2.4  Stability Analysis on Critical Properties of Ferroelectric Systems5.3  Ferroelectric Thin Films in Nanoscale5.3.1  Thermodynamic Model for a Thick Ferroelectric Film5.3.2  Size and Surface Effects on Ferroelectric Thin Films5.3.3  The Evolution Equation and Stability of the Stationary States..5.3.4  Curie Temperature and Critical Thickness5.3.5  Curie-Weiss Law of Ferroelectric Thin Film in Nanoscale5.4  Critical Properties of Ferroelectric Capacitors or Tunnel Junctions..5.4.1  The Thermodynamic Potential of the FerroelectricCapacitors or Tunnel Junctions5.4.2  The Evolution Equation and Stability of the Stationary States..5.4.3  Curie Temperature of the Ferroelectric Capacitors orTunnel Junctions5.4.4  Polarization as a Function of Thickness of the FerroelectricCapacitors or Tunnel Junctions5.4.5  Critical Thickness of the Ferroelectric Capacitors orTunnel Junctions5.4.6  Curie-Weiss Relation of the Ferroelectric Capacitors orTunnel Junctions .5.5  Ferroelectric Superlattices in Nanoscale5.5.1  The Free Energy Functional ofFerroelectric Superlattices5.5.2  The Phase Transition Temperature ofPTO/STO Superlattice.5.5.3  Polarizafion and Critical Thickness ofPTO/STO Superlattice5.5.4  The Curie-Weiss-Type Relation ofPTO/STO Superlattice5.6  Ferroelectric Nanowires and Nanotubes5.6.1  Surface Tension ofFerroelectric Nanowires and Nanotubes.5.6.2  Size and Surface Effects on Ferroelectric Nanowires5.6.3  Ferroelectric Nanotubes5.7  Ferroelectric Nanograins or Nanoislands5.7.1  Free Energy of Ferroelectric Nanograins or Nanoislands5.7.2  Stability of the Ferroelectric State and TransitionCharacteristics5.7.3  Critical Properties of Nanograins or Nanoislands5.8  RemarksReferences6  Strain Engineering: Ferroeleetrie Films on Compliant Substrates6.1  Background6.2  Manipulation of Phase Transition Behavior of Ferroelectric ThinFilms on Compliant Substrates6.2.1  Free Energy Expressions6.2.2  Evolution Equations6.2.3  Manipulation of Ferroelectric Transition Temperature and Critical Thickness6.2.4  Manipulation of the Order of Transition6.3  Piezoelectric Bending Response and Switching Behavior ofFerroelectric Thin Film with Compliant Paraelectric Substrate6.3.1  Model of Ferroelectric Thin Film with CompliantParaelectric Substrate and the Energy Expressions6.3.2  Solution of the Evolution Equation6.3.3  The Stationary and Relative Bending Displacements of theBilayer6.3.4  Dynamic Piezoelectric and Bending Response of theBilayer Under a Cyclic Electric Field6.3.5  Examples and Discussions6.4  Critical Thickness for Dislocation Generation in Piezoelectric ThinFilms on Substrate6.4.1  Elastic and Electric Fields in a Piezoelectric Semi-InfiniteSpace with a Dislocation6.4.2  Critical Thickness for Dislocation Generation6.4.3  Effect of Piezoelectric Behavior of the Materials on theCritical Thickness for Dislocation Formation6.5  Critical Thickness of Dislocation Generation in FerroelectdcThin Film on a Compliant Substrate6.5.1  Mechanical Properties of the Problem6.5.2  The Formation Energy and the Critical Thickness of Spontaneous Formation of Misfit Dislocation6.6  RemarksReferences7  Derivation of the Landau-Ginzburg Expansion Coefficients7.1  Introduction7.2  Fundamental of the Landau-Devonshire Theory7.2.1  The History of the Landau Free Energy Theory7.2.2  The Thermodynamic Functions of the Dielectrics and Phase Transition7.2.3  The Expansion of the Free Energy and Phase Transition7.3  Determination of Landau Free Energy Expansion Coefficients Based on Experimental Methods7.3.1  The Experimental Observation of the Phase Transition Characteristics in Ferroelectrics7.3.2  The Phenomenological Treatment of Devonshire Theory7.3.3  The Elastic Gibbs Free Energy of PbTiO3 and Its Coefficients7.3.4  The Determination of the Expansion Coefficients fromthe First-Principle Calculation Based on the EffectiveHamiltonian Method7.4  Gradient Terms in the Landau-Devonshire-Ginzburg Free Energy Expansion7.4.1  The Consideration of Spatial Non-uniform Distributionof the Order Parameters in the Landau Theory7.4.2  The Critical Region and the Applicability of LandauMean Field Theory7.4.3  Determination of the Gradient Terms from the LatticeDynamic Theory7.4.4  The Extrapolation Length and the Gradient Coefficient7.5  The Transverse Ising Model and Statistical Mechanics Approaches7.5.1  Phase Transition from the Transverse Ising Model7.5.2  Relationship of the Parameters Between Landau Theoryand the Transverse Ising Model7.5.3  Determination of Landau-Ginzburg Free Energy ExpansionCoefficients from Statistical Mechanics7.6  RemarksReferences8  Multiferroie Materials8.1  Background8.2  Coupling Mechanism of Multiferroic Materials8.2.1  Single Phase Multiferroic Materials8.2.2  Magnetoelectric Composites8.3  Theories of Magnetoeleclric Coupling Effect at Low Frequency8.3.1  Energy Formulation for Multiferroic Composites8.3.2  Phase Transition Behaviors in Layered Structures8.3.3  Magnetoelectfic Coupling Coefficients in Layered Structures8.4  Magnetoelectric Coupling at Resonance Frequency8.4.1  Magnetoelectric Coupling at Bending Modes8.4.2  Magnetoelectfic Coupling at Electromechanical Resonance8.4.3  Magnetoelectric Coupling at Ferromagnetic Resonance8.5  RemarksReferences9  Dielectric Breakdown of Mieroeleetronie and Nanoeleetronie Devices.9.1  Introduction9.2  Basic Concepts9.2.1  MOS Structure9.2.2  Different Tunneling Modes9.2.3  Dielectric Breakdown Modes9.2.4  Defect Generation9.2.5  Basic Statistical Concepts of Dielectric Breakdown9.2.6  Stress Induced Leakage Current9.2.7  Holes Generation9.2.8  Energetics of Defects9.3  Mechanism Analysis of Tunneling Phenomena in Thin Oxide Film.9.3.1  Self-consistent SchrSdinger's and Poisson's Equations9.3.2  Transmission Coefficient9.3.3  Tunneling Current Components9.3.4  Microscopic Investigation of Defects from First-Principles Calculation9.3.5  Manipulating Tunneling by Applied Strains9.4  Degradation Models in Gate Oxide Films9.4.1  Anode Hole Injection Model9.4.2  Thermochemical Model9.4.3  Anode Hydrogen Release Model9.4.4  Thermal Breakdown Model9.4.5  Mechanical-Stress-Induced Breakdown Model9.4.6  Remarks9.5  Statistical Models of Dielectric Breakdown9.5.1  A Basic Statistical Model9.5.2  A Three-Dimensional Statistical Model9.5.3  Sphere and Cube Based Percolation Models9.5.4  Combination of Percolation Model and Degradation Model9.6  Damage of Dielectric Breakdown in MOSFET9.6.1  Lateral Propagation of Breakdown Spot9.6.2  Dielectric Breakdown-Induced Epitaxy9.6.3  Dielectric Breakdown-Induced Migration9.6.4  Meltdown and Regrowth of Silicided Poly-Si Gate9.6.5  Damage in Substrate9.7  RemarksReferencesIndex

编辑推荐

《先进功能材料力学(英文版)》编辑推荐:近些年来,压电、铁电、光电等功能材料由于制备方法和工艺的进步以及越来越广泛的工程应用已经成为材料科学,凝聚态物理,力学等领域的研究热点。这些功能材料传统上不是力学领域的研究课题。但由于现代的材料加工工艺必然导致不可忽略的应力和应变,而且,人们也发现由于应变应力的存在,功能材料的性能会发生很大的改变。这样,力学与电、磁、光等功能的耦合成为目前热门的研究领域。而且,任何的功能材料都存在强度和可靠性的问题,这也需要拓宽传统的力学模型和理论进行解决。《先进功能材料力学(英文版)》的重点是针对力、电、磁、光的重要耦合问题,发展新颖的数学模型进行解释、预报先进功能材料的性能。研究利用力学变量定量调控功能材料性能的理论和方法。将系统总结作者多年来在压电、铁电和光电等功能材料与力学相互作用等方面的研究成果,初步形成功能材料的力学模型理论体系。《先进功能材料力学(英文版)》重点强调交叉学科和非线性科学的作用,从工程实际问题出来,系统描述物理建模和求解的方法。《先进功能材料力学(英文版)》可以作为相关学科的研究生和研究人员的主要参考书。

图书封面

评论、评分、阅读与下载


    先进功能材料力学 PDF格式下载


用户评论 (总计0条)

 
 

 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7