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In 1901 Adolf Hurwitz published a short note showing that Fourier series can be used to prove the isoperimetric
inequality for domains in the Euclidean plane,and in a subsequent article he showed how spherical harmonics can
be utilized to prove an analogous inequality for three-dimensional convex bodies. A few years later Hermann
Minkowski used spherical harmonics to prove an interesting characterization of (three-dimensional) convex
bodies of constant width. The work of Hurwitz and Minkowski has convincingly shown that a study of this
interplay of analysis and geometry, in particular of Fourier series and spherical harmonics on the one hand, and the
theory of convex bodies on the other hand, can lead to interesting geometric results. Since then many articles have
appeared that explored the possibilities of such methods.

Page 2



000 0O, tushu007.com
<«<OQJ0000o0Oooooooods

good
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