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"Though of real knowledge there be little, yet of books there are plenty" -Herman Melville, Moby Dick, Chapter
XXXI.The treatment of integration developed by the French mathematician Henri Lebesgue [ 1875-1944[]
almost a century ago has proved to be indispensable in many areas of mathematics. Lebesgue’s theory is of such
extreme importance because on the one hand it has rendered previous theories of integration virtually obsolete,
and on the other hand it has not been replaced with a significantly different, better theory. Most subsequent
important investigations of integration theory have extended or illuminated Lebesgue's work.In fact, as is so often
the case in a new field of mathematics, many of the best consequences were given by the originator. For
example,Lebesgue’s dominated convergence theorem, Lebesgue's increasing convergence theorem, the theory of
the Lebesgue function of the Cantor ternary set, and Lebesgue's theory of differentiation of indefinite
integrals.Naturally, many splendid textbooks have been produced in this area.l shall list some of these below. They
axe quite varied in their approach to the subject. My aims in the present book are as follows.1. To present a slow
introduction to Lebesgue integration Most books nowadays take the opposite tack. | have no argument with their
approach, except that | feel that many students who see only a very rapid approach tend to lack strong intuition
about measure and integration. That is why | have made Chapter 2, "Lebesgue measure on Rn[J "so lengthy and
have restricted it to Euclidean space, and why | have [J somewhat inconveniently[] placed Chapter 3, "Invaxiance
of Lebesgue measure," before Pubini’s theorem. In my approach | have omitted much important material, for the
sake of concreteness. As the title of the book signifies, I restrict attention almost entirely to Euclidean space.2. To
deal with n-dimensional spaces from ‘the outset. | believe this is preferable to one standard approach to the theory
which first thoroughly treats integration on the real line and then generalizes. There are several reasons for this
belief. One is quite simply that significant figures are frequently easier to sketch in IRe than in R1[

Another is that some things in IR1 are so special that the generalization to Rn is not clear; for example, the
structure of the most general open set in R1 is essentially trivial —— it must be a disjoint union of open intervals

[ see Problem 2.600 . A third is that coping with the n-dimensional case from the outset causes the learner to
realize that it is not significantly more difficult than the one-dimensional case as far as many aspects of integration
are concerned.3. To provide a thorough treatment of Fourier analysis. One of the triumphs of Lebesgue integration
is the fact that it provides definitive answers to many questions of Fourier analysis. | feel that without a thorough
study of this topic the student is simply not well educated in integration theory. Chapter 13 is a very long one on the
Fourier transform in several variables, and Chapter 14 also a very long one on Fourier series in one variable.
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