第一图书网，tushu007．com

＜＜对称和薿聚态物理学中的计算方法＞＞

图书基本信息
书名：＜＜对称和疑聚态物理学中的计算方法＞＞
13位ISBN编号：9787510042812
10位ISBN编号：751004281X
出版时间：2012－3
出版时间：世界图书出版公司
作者：巴塔努尼
页数： 922
版权说明：本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问：http：／／www．tushu007．com

内容概要

本书与其它传统著作不同，巴塔努尼编著的《对称和疑聚态物理学中的计算方法》首次系统地介绍了现代物理学中三个非常重要的主题：对称，凝聚态物理和计算方法以及它们之间的有机联系。本书展示了如何有效地利用群论来研究与对称性有关的实际物理问题，首先介绍了对称性，进而引入群论并详细介绍了群的表示理论，特征标的计算，直积群和空间群等，然后讲解利用群论研究固体的电子性质以及表面动力学特性，此外还包括群论在傅立叶晶体学，准晶和非公度系统中的高级应用。本书包括大量的mathematica示例程序和150多道练习，可以帮助读者进一步理解概念。本书是凝聚态物理，材料科学和化学专业的研究生的理想教材。

书籍目录

preface
1 symmetry and physics
11 introduction
12 hamiltonians，eigenfunctions，and eigenvalues
13 symmetry operatorsand operator algebra
14 point－symmetry operations
15 applicationsto quantum mechanics

exercises

2 symmetry and group theory
21 groupsand their realizations
2．2the symmetric group
23computational aspects
24classes
25 homomorphism，isomorphism，and automorphism
26 direct－or outer－product groups
exercises
3group representations concepts
3.1 representationsand realizations
3.2 generation of representationson aset of basisfunctions
exercises
4 group representations formalism and methodology
4．1 matrix representations
4．2 character of a matrix representation
4．3burnside＇smethod
exercises
computational projects
5 dixon＇smethod for computing group characters
5．1 the eigenvalue equation modulo p
5.2 dixon＇smethod for irreducible characters
5.3 computer codesfor dixon＇smethod
appendix 1 finding eigenvalues and eigenvectors

exercises

appendix 2
computation project
6 group action and symmetry projection operators

6．1group action

6.2 symmetry projection operators

6．3the regula projection matrices the simple
characteristic
exercises
7 construction of the irreducible representations
7．1 eigenvectors of the regular rep
7．2the symmetry structure of the regular rep eigenvectors
7．3symmetry projection on regular rep eigenvectors
7．4 computer construction of irrepswith ds］1

7.5 summary of the method

 exerciæ8 product groupsand product representations
8．1 introduction
8.2 subgroupsand cosets
8.3 direct outer－product groups
8.4 semidirect product groups
8.5 direct inner－product groupsand their representations
8.6 product representationsand the clebsch－gordan series
8.7 computer codes

8．8summary

exercises

9 induced representations
9.1 introduction
9.2 subduced repsand compatibility relations

9．3induction of group repsfrom the irrepsof itssubgroups
9．4irrepsinduced from invariant subgroups
9．5 examplesof irrep induction using the method of little groups
appendix frobeniusreciprocity theorem and other useful
theorems
exercises
10 crystallographic symmetry and space groups
10．1euclidean space
10.2 crystallography

10．3the perfect crystal
10.4 space group operations the seitz operators
10.5 symmorphic and nonsymmorphic space groups
10.6 site symmetries and the ．wyckoff notation
10.7 fourier space crystallography

exercises

11 space groups irreps
111 irrepsof the transation group
112 induction of irrepsof space groups
exercises
12 time reversal symmetry：color groupsand the onsager
relations
121 introduction
122 the time reversal operator in quantum mechanics
123 spin－I／2 and double groups
12.4 magnetic and color groups

12．5 the time reversed representation：theory of
corepresentations
126theory of crystal fields
12.7 onsager reciprocity theorem（onsager relations）and transport
properties
exercises

13tensorsand tensor fields
13.1 tensorsand their space time symmetries
13.2 construction of symmetry－adapted tensors

13．3description and classification of matter tensors
13．4tensor field representations
exercises
14 electronic properties of solids
14.1 introduction
14.2 the one electron approximationsand self－consistent－field theories
14．3methodsand techniquesfor band structure calculations
14．4 electronic structure of magnetically ordered systems
appendix i derivation of the hartre fock equations
appendix 2 holstein－primakoff（hp）operators
exercises
15 dynamical properties of molecules，solids，and surfaces
15.1 introduction

15．2dynamical properties of molecules
15.3 dynamical propertiesof solids
15.4 dynamical properties of surfaces
appendix 1 coulomb interactionsand the method of ewald
summation
appendix 2 electronic effectson phononsin insulatorsand
semiconductors
exercises
16 experimental measurementsand selection rules
16.1 introduction
16.2 selection rules

16．3differential scattering cross sectionsin the born
approximation
16．4 light scattering spectroscopies
16.5 photoemission and dipole selection rules
16.6 neutron and atom scattering spectroscopies
exercises
17．1 phasetransitionsand their classification
17．2 landau theory of phasetransitions principles
17.3 construction and minimization techniquesfor $\triangle \varphi$
exercises
18 incommensurate systemsand quasi－crystals
18.1 introduction

18．2 the concept of higher－dimensional spaces superspacesand superlattices
18．3quasi－crystal symmetry：the notion of indistinguishability and the clossification of space groups
18.4 two－dimensional lattices，cyclotomic integers，and axial
stacking
bibliography
references
index

章茅㧫录

版权页：插图：The application of group theory to study physical problemsand their solutionsprovidesa formal method for exploiting the simplificationsmade possible by the presence of symmetry ．Often the symmetry that isreadily apparent isthe symmetry of the system／object of interest，such asthe thre－fold axial symmetry of an NH 3 molecule．Thesymmetry exploited in actual analysisisthe symmetry of the H amiltonian ．W hen alluding to sym－metry we usually includegeometrical，time－reversal symmetry，and symmetry associated with the exchange of identical particles．Con，servation laws of physicsare rooted in the symmetries of the underlying space and time．The most common physical lawswe are familiar with are actually marufestations of some universal symmetries．For example，the homogeneity and isotropy of space lead to the conservation of linear and angular momentum，respectively，while the homogeneity of time leadsto the conservation of energy ．Such lawshave come to be known asuniversal conservation laws．A swe will delineate in alater chapter，the relation between these classical symmetries and corresponding conserved quantitiesisbeautifully cast in atheorem due to Emmy Noether ．At the day－to－day working level of t ．he physicist dealing with quantum mechanics ，the application of symmetry restrictionsleadsto familiar results，such asselection rulesand characteristic transformations of eigenfunctionswhen acted upon by symmetry operationsthat leave the H amiltonian of the system invariant ．In asimilar manner，we expect that when a physical system／object isendowed with special symmetries，these symmetriesforge conæervation relationsthat ultimately determine its physical properties ． rIYaditionally，the derivation of the physical statesof asystem hasbeen performed without invoking the symmetry properties，however，the advantage of taking account of symmetry aspectsisthat it resultsin great simplification of the underlying analysis，and it providespowerful insight into the nature and the physicsof the system．The mathematical framework that transatesthese symmetries into suitable mathematical relationsis found in the theory of groupsand group representations．Thisisthe subject we will try to elucidate throughout the chaptersof thisbook．Wekn，ozu thisto be true becauæsinx is on odd function ；sin（ -x ）＝－sin（ x ）．In evaluating thisintegral，we have taken advantage of the asymmetry of itsintegrand．In order to cast this problem in the language of symmetry we introduce two mathematical operations：／，which we will identify later with theoperation of inversion，and which，for now，changesthe sign of the argument of afunction，i ．e ．If $(x)=f(-x)$ ；and E ，which isan identity operation，Ef $(x)=f(x)$ ．Thisallowsusto write Figure 1．1 showsschematically the plane of integration，with q3and 8indicating the sign of the function sin x ． We may introduce a more complicated integrand function $f(x, y)$ ，and carry the integration over the equilateral triangular areashown in Figure1． 2 ．

第一图书网，tushu007．com

＜＜对称和箕聚态物理学中的计算方法＞＞

版权说明
本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问：http：／／www．tushu007．com

