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OOO00O OO0 Theapplication of group theory to study physical problems and their solutions provides a
formal method for exploiting the simplifications made possible by the presence of symmetry[d Often the symmetry
that is readily apparent is the symmetry of the system/object of interestl] such as the three—fold axial symmetry of
an NH3 moleculel] The symmetry exploited in actual analysis is the symmetry of the Hamiltonian(J When
alluding to sym—metry we usually include geometrical(] time—reversal symmetry[] and symmetry associated
with the exchange of identical particlesd Con[l servation laws of physics are rooted in the symmetries of the
underlying space and timed The most common physical laws we are familiar with are actually marufestations of
some universal symmetriesC] For exampled the homogeneity and isotropy of space lead to the conservation of
linear and angular momentumU respectively] while the homogeneity of time leads to the conservation of energy
[0 Such laws have come to be known as universal conservation laws[] As we will delineate in a later chapter[] the
relation between these classical symmetries and corresponding conserved quantities is beautifully cast in a theorem
due to Emmy Noether[dJ At the day—to—day working level of t[I he physicist dealing with quantum mechanics
O the application of symmetry restrictions leads to familiar resultsC] such as selection rules and characteristic
transformations of eigenfunctions when acted upon by symmetry operations that leave the Hamiltonian of the
system invariant[] In asimilar mannerd we expect that when a physical system/object is endowed with special
symmetries[] these symmetries forge conservation relations that ultimately determine its physical properties[]
rlYaditionally] the derivation of the physical states of a system has been performed without invoking the
symmetry propertiest] however[] the advantage of taking account of symmetry aspects is that it results in great
simplification of the underlying analysisC] and it provides powerful insight into the nature and the physics of the
system[] The mathematical framework that translates these symmetries into suitable mathematical relations is
found in the theory of groups and group representationsC] This is the subject we will try to elucidate throughout
the chapters of this book[] We kn[J ozu this to be true because sinx is an odd function sin] 00 xO O O sin x
0 O In evaluating this integral (] we have taken advantage of the asymmetry of its integrand[] In order to cast this
problem in the language of symmetry we introduce two mathematical operations] /00 which we will identify later
with the operation of inversion and whichO for now[] changes the sign of the argument of a functiond i e
O If00 xO O fO O xO O and EO which is an identity operation] Eff] x0 [0 f0 xOI O This allows us to write
Figure 100 1 shows schematically the plane of integrationdJ with g3 and 8 indicating the sign of the function sin x[
We may introduce a more complicated integrand function flJ x[J y[O [0 and carry the integration over the
equilateral triangular area shown in Figure 100 201
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