00004, tushu007.com
<<[] 0 O 0O O Haskell>>

guoooon

00 0<<0 000 0O Haskell>>

1300 ISBNUO O 0 9787564119256

1000 ISBNO U0 [0 756411925X
0dodon2010-1
gooooboooogooao
ooo[@Q]ooo,o]oo,o]oooo
0 0dgdero

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00004, tushu007.com
<<[] 0 O O O Haskell>>

gd

[0 O Have We Got a Deal for You!ll [0 Haskell is a deep language; we think learning it is a hugely rewarding
experience. We will focus on three elements as we explain why. The first is novelty[] we invite you to think about
programming from a different and valuable perspective. The second is power[] well show you how to create
software that is short(] fastl] and safe. Lastly[] we offer you a lot of enjoyment[] the pleasure of applying
beautiful programming techniques to solve real problems.[J [0 Novelty[] [0 Haskell is most likely quite different
from any language youve ever used before. Compared to the usual set of concepts in a programmers mental
toolbox functional programming offers us a profoundly different way to think about software.[J O In Haskell
we deemphasize code that modifies data. Instead[] we focus on functions that take immutable values as input and
produce new values as output. Given the same inputsC] these functions always return the same results. This is a
core idea behind functional programming.[J [J Along with not modifying datal] our Haskell functions usually
dont talk to the external world; we call these functions pure. We make a strong distinction between pure code and
the parts of our programs that read or write filesC] communicate over network connectionst] or make robot arms
move. This makes it easier to organize[J reason about[] and test our programs.[] [We abandon some ideas that
might seem fundamentall] such as having a for loop built into the language. We have other[] more flexibleJ
ways to perform repetitive tasks. Even the way in which we evaluate expressions is different in Haskell. We defer
every computation until its result is actually needed——Haskell is a lazy language. Laziness is not merely a matter
of moving work around[J it profoundly affects how we write programs.tJ [J Power [Throughout this book[
we will show you how Haskells alternatives to the features of traditional languages are powerful and flexible and
lead to reliable code. Haskell is positively crammed full of cutting-edge ideas about how to create great software.[]
[Since pure code has no dealings with the outside world[J and the data it works with is never modified the
kind of nasty surprise in which one piece of code invisibly corrupts data used by another is very rare. Whatever
context we use a pure function in(the function will behave consistently.

Page 2

00004, tushu007.com
<<[] 0 O 0O O Haskell>>

goon

[0 O Haskell is most likely quite different from any language youve ever used before. Compared to the usual set of
concepts in a programmers mental toolboxd functional programming offers us a profoundly different way to
think about software.[] [J In Haskell(l we deemphasize code that modifies data. Instead[] we focus on functions
that take immutable values as input and produce new values as output. Given the same inputsd these functions
always return the same results. This is a core idea behind functional programming.

Page 3

00004, tushu007.com
<<[] 0 O O O Haskell>>

good

Prefacel. Getting StartedYour Haskell EnvironmentGetting Started with ghcilJ the InterpreterBasic Interaction[]
Using ghci as a CalculatorSimple ArithmeticAn Arithmetic Quirkd Writing Negative NumbersBoolean Logic[]
Operators[] and Value ComparisonsOperator Precedence and AssociativityUndefined Values[] and Introducing
VariablesDealing with Precedence and Associativity RulesCommand-Line Editing in ghciListsOperators on
ListsStrings and CharactersFirst Steps with TypesA Simple Program?2. Types and FunctionsWhy Care About
Types?Haskell’ s Type SystemStrong TypesStatic TypesType InferenceWhat to Expect from the Type
SystemSome Common Basic TypesFunction ApplicationUseful Composite Data Types[Lists and
TuplesFunctions over Lists and TuplesPassing an Expression to a FunctionFunction Types and PurityHaskell
Source Filest] and Writing Simple FunctionsJust What Is a Variable[1 Anyway?Conditional
EvaluationUnderstanding Evaluation by ExampleLazy EvaluationA More Involved ExampleRecursionEnding the
RecursionReturning from the RecursionWhat Have We Learned?Polymorphism in HaskellReasoning About
Polymorphic FunctionsFurther ReadingThe Type of a Function of More Than One ArgumentWhy the Fuss over
Purity?Conclusion3. Defining Types] Streamlining FunctionsDefining a New Data TypeNaming Types and
ValuesType SynonymsAlgebraic Data TypesTuplesC] Algebraic Data Types] and When to Use EachAnalogues
to Algebraic Data Types in Other LanguagesPattern MatchingConstruction and DeconstructionFurther
AdventuresVariable Naming in PatternsThe Wild Card PatternExhaustive Patterns and Wild CardsRecord
SyntaxParameterized TypesRecursive TypesReporting ErrorsA More Controlled Approachintroducing Local
VariablesShadowingThe where ClauseLocal Functions[] Global VariablesThe Offside Rule and Whitespace in an
ExpressionA Note About Tabs Versus SpacesThe Offside Rule Is Not MandatoryThe case ExpressionCommon
Beginner Mistakes with Patternsincorrectly Matching Against a VariableIncorrectly Trying to Compare for
EqualityConditional Evaluation with Guards4. Functional ProgrammingThinking in HaskellA Simple
Command-Line FrameworkWarming Up[Portably Splitting Lines of TextA Line-Ending Conversion
ProgramInfix FunctionsWorking with ListsBasic List ManipulationSafely and Sanely Working with Crashy
FunctionsPartial and Total FunctionsMore Simple List ManipulationsWorking with SublistsSearching
ListsWorking with Several Lists at OnceSpecial String-Handling FunctionsHow to Think About LoopsExplicit
RecursionTransforming Every Piece of InputMapping over a ListSelecting Pieces of InputComputing One Answer
over a CollectionThe Left FoldWhy Use Foldsl1 Maps[] and Filters?Folding from the RightLeft Folds[] Laziness
[0 and Space LeaksFurther ReadingAnonymous (lambda) FunctionsPartial Function Application and
CurryingSectionsAs-patternsCode Reuse Through CompositionUse Your Head WiselyTips for Writing Readable
CodeSpace Leaks and Strict EvaluationAvoiding Space Leaks with seqLearning to Use seg5. Writing a LibraryJ
Working with JSON DataA Whirlwind Tour of JSONRepresenting JSON Data in HaskellThe Anatomy of a
Haskell ModuleCompiling Haskell SourceGenerating a Haskell Program and Importing ModulesPrinting JSON
DataType Inference Is a Double-Edged SwordA More General Look at RenderingDeveloping Haskell Code
Without Going NutsPretty Printing a StringArrays and Objects] and the Module HeaderWriting a Module
HeaderFleshing Out the Pretty-Printing LibraryCompact RenderingTrue Pretty PrintingFollowing the Pretty
PrinterCreating a PackageWriting a Package DescriptionGHC’ s Package ManagerSetting Up[] Building] and
InstallingPractical Pointers and Further Reading6. Using TypeclassesThe Need for TypeclasseswWhat Are
Typeclasses?Declaring Typeclass Instancesimportant Built-in TypeclassesShowReadSerialization with read and
showNumeric TypesEquality[l Orderingl] and ComparisonsAutomatic DerivationTypeclasses at Work[]
Making JSON Easier to UseMore Helpful ErrorsMaking an Instance with a Type SynonymLiving in an Open
WorldWhen Do Overlapping Instances Cause Problems?Relaxing Some Restrictions on TypeclassesHow Does
Show Work for Strings?How to Give a Type a New IdentityDifferences Between Data and Newtype
DeclarationsSummary[d] The Three Ways of Naming TypesJSON Typeclasses Without Overlapping InstancesThe
Dreaded Monomorphism RestrictionConclusion?. 1/OClassic 1/0 in HaskellPure Versus I/OWhy Purity
MattersWorking with Files and HandlesMore on openFileClosing HandlesSeek and TellStandard Inputl] Output

Page 4

00004, tushu007.com
<<[] 0 O O O Haskell>>

O and ErrorDeleting and Renaming FilesTemporary FilesExtended Example[dJ Functional I/O and Temporary
FilesLazy 1/0hGetContentsreadFile and writeFileA Word on Lazy OutputinteractThe 10
MonadActionsSequencingThe True Nature of Returnls Haskell Really Imperative?Side Effects with Lazy
I/OBufferingBuffering ModesFlushing The BufferReading Command-Line ArgumentsEnvironment Variables8.
Efficient File Processingl] Regular Expressions[] and Filename MatchingEfficient File ProcessingBinary 1/0 and
Qualified ImportsText I/OFilename MatchingRegular Expressions in HaskellThe Many Types of ResultMore
About Regular ExpressionsMixing and Matching String TypesOther Things You Should KnowTranslating a glob
Pattern into a Regular ExpressionAn important Asidel] Writing Lazy FunctionsMaking Use of Our Pattern
MatcherHandling Errors Through API DesignPutting Our Code to Work9. 1/0 Case Study] A Library for
Searching the FilesystemThe find CommandStarting Simpled Recursively Listing a DirectoryRevisiting
Anonymous and Named FunctionsWhy Provide Both mapM and forM?A Naive Finding FunctionPredicates[]
From Poverty to Richest] While Remaining PureSizing a File SafelyThe Acquire-Use-Release CycleA
Domain-Specific Language for PredicatesAvoiding Boilerplate with LiftingGluing Predicates TogetherDefining and
Using New OperatorsControlling TraversalDensity[] Readability[] and the Learning ProcessAnother Way of
Looking at TraversalUseful Coding GuidelinesCommon Layout Styles10. Code Case Study[] Parsing a Binary
Data FormatGrayscale FilesParsing a Raw PGM FileGetting Rid of Boilerplate Codelmplicit StateThe Identity
ParserRecord Syntax[] Updates[] and Pattern MatchingA More Interesting ParserObtaining and Modifying the
Parse StateReporting Parse ErrorsChaining Parsers TogetherIntroducing FunctorsConstraints on Type Definitions
Are BadlInfix Use of fmapFlexible InstancesThinking More About FunctorsWriting a Functor Instance for
ParseUsing Functors for ParsingRewriting Our PGM ParserFuture Directions11. Testing and Quality
AssuranceQuickCheck Type-Based TestingTesting for PropertiesTesting Against a ModelTesting Case Study[]
Specifying a Pretty PrinterGenerating Test DataTesting Document ConstructionUsing Lists as a ModelPutting It
All TogetherMeasuring Test Coverage with HPC12. Barcode RecognitionA Little Bit About BarcodesEAN-13
EncodinglIntroducing ArraysArrays and LazinessFolding over ArraysModifying Array ElementsEncoding an
EAN-13 BarcodeConstraints on Our DecoderDivide and ConquerTurning a Color Image into Something
TractableParsing a Color ImageGrayscale ConversionGrayscale to Binary and Type SafetyWhat Have We Done to
Our Image?Finding Matching DigitsRun Length EncodingScaling Run Lengths] and Finding Approximate
MatchesList ComprehensionsRemembering a Match’ s ParityChunking a ListGenerating a List of Candidate
DigitsLife Without Arrays or Hash TablesA Forest of SolutionsA Brief Introduction to MapsFurther
ReadingTurning Digit Soup into an AnswerSolving for Check Digits in ParallelCompleting the Solution Map with
the First DigitFinding the Correct SequenceWorking with Row DataPulling It All TogetherA Few Comments on
Development Style13. Data StructuresAssociation ListsMapsFunctions Are Datall TooExtended Examplel]
/etc/passwdExtended Exampleld Numeric TypesFirst StepsCompleted CodeTaking Advantage of Functions as
DataTurning Difference Lists into a Proper LibraryListsCJ Difference ListsC] and MonoidsGeneral-Purpose
Sequencesl4. MonadsRevisiting Earlier Code ExamplesMaybe Chaininglmplicit StateLooking for Shared
PatternsThe Monad TypeclassAnd Now[] a Jargon MomentUsing a New Monad[d Show Your
Work!Information HidingControlled EscapelLeaving a TraceUsing the Logger MonadMixing Pure and Monadic
CodePutting a Few Misconceptions to RestBuilding the Logger MonadSequential Loggingld Not Sequential
EvaluationThe Writer MonadThe Maybe MonadExecuting the Maybe MonadMaybe at Work[] and Good API
DesignThe List MonadUnderstanding the List MonadPutting the List Monad to WorkDesugaring of do
BlocksMonads as a Programmable SemicolonWhy Go Sugar-Free?The State MonadAlmost a State MonadReading
and Modifying the StateWill the Real State Monad Please Stand Up?Using the State Monad[l Generating Random
ValuesA First Attempt at PurityRandom Values in the State MonadRunning the State MonadWhat About a Bit
More State?Monads and FunctorsAnother Way of Looking at MonadsThe Monad Laws and Good Coding
Style15. Programming with MonadsGolfing Practicel] Association ListsGeneralized LiftingLooking for
AlternativesThe Name mplus Does Not Imply AdditionRules for Working with MonadPlusFailing Safely with
MonadPlusAdventures in Hiding the PlumbingSupplying Random NumbersAnother Round of GolfSeparating

Page 5

00004, tushu007.com
<<[] 0 O O O Haskell>>

Interface from ImplementationMultiparameter TypeclassesFunctional DependenciesRounding Out Our
ModuleProgramming to a Monad’ s InterfaceThe Reader MonadA Return to Automated DerivingHiding the 10
MonadUsing a newtypeDesigning for Unexpected UsesUsing Typeclasseslsolation and TestingThe Writer Monad
and ListsArbitrary 1/0 Revisited16. Using ParsecFirst Steps with Parsec[] Simple CSV ParsingThe sepBy and
endBy CombinatorsChoices and ErrorsLookaheadError HandlingExtended Example[d Full CSV ParserParsec
and MonadPlusParsing a URL-Encoded Query StringSupplanting Regular Expressions for Casual ParsingParsing
Without VariablesApplicative Functors for ParsingApplicative Parsing by ExampleParsing JSON DataParsing a
HTTP RequestBacktracking and Its DiscontentsParsing Headers17. Interfacing with CC0 The FFIForeign
Language Bindingsd The BasicsBe Careful of Side EffectsA High-Level WrapperRegular Expressions for Haskell
(0 A Binding for PCRESimple Tasks[] Using the C PreprocessorBinding Haskell to C with hsc2hsAdding Type
Safety to PCREBInding to ConstantsAutomating the BindingPassing String Data Between Haskell and CTyped
PointersMemory Management[] Let the Garbage Collector Do the WorkA High-Level Interface[] Marshaling
DataMarshaling ByteStringsAllocating Local C Datal] The Storable ClassPutting It All TogetherMatching on
StringsExtracting Information About the PatternPattern Matching with SubstringsThe Real Dealll Compiling and
Matching Regular Expressions18. Monad TransformersMotivation] Boilerplate AvoidanceA Simple Monad
Transformer ExampleCommon Patterns in Monads and Monad TransformersStacking Multiple Monad
TransformersHiding Our WorkMoving Down the StackWhen Explicit Lifting Is NecessaryUnderstanding Monad
Transformers by Building OneCreating a Monad TransformerMore Typeclass InstancesReplacing the Parse Type
with a Monad StackTransformer Stacking Order Is ImportantPutting Monads and Monad Transformers into
Perspectivelnterference with Pure CodeOverdetermined OrderingRuntime OverheadUnwieldy InterfacesPulling It
All Together19. Error HandlingError Handling with Data TypesUse of MaybeUse of EitherExceptionsFirst Steps
with ExceptionsLaziness and Exception HandlingUsing handleSelective Handling of Exceptionsl/O
ExceptionsThrowing ExceptionsDynamic ExceptionsError Handling in MonadsA Tiny Parsing Framework20.
Systems Programming in HaskellRunning External ProgramsDirectory and File InformationProgram
TerminationDates and TimesClockTime and CalendarTimeFile Modification TimesExtended Example[]
PipingUsing Pipes for RedirectionBetter PipingFinal Words on Pipes21. Using DatabasesOverview of
HDBClnstalling HDBC and DriversConnecting to DatabasesTransactionsSimple QueriesSglValueQuery
ParametersPrepared StatementsReading ResultsReading with StatementsLazy ReadingDatabase MetadataError
Handling22. Extended Exampled Web Client ProgrammingBasic TypesThe DatabaseThe
ParserDownloadingMain Program23. GUI Programming with gtk2hslnstalling gtk2hsOverview of the GTK+
StackUser Interface Design with GladeGlade ConceptsEvent-Driven Programminglnitializing the GUIThe Add
Podcast WindowLong-Running TasksUsing Cabal24. Concurrent and Multicore ProgrammingDefining
Concurrency and ParallelismConcurrent Programming with ThreadsThreads Are NondeterministicHiding
LatencySimple Communication Between ThreadsThe Main Thread and Waiting for Other ThreadsSafely
Modifying an MVarSafe Resource Management[] A Good Ideal] and Easy BesidesFinding the Status of a
ThreadWriting Tighter CodeCommunicating over ChannelsUseful Things to Know AboutMVar and Chan Are
NonstrictChan Is UnboundedShared-State Concurrency Is Still HardDeadlockStarvationls There Any
Hope?Using Multiple Cores with GHCRuntime OptionsFinding the Number of Available Cores from
HaskellChoosing the Right RuntimeParallel Programming in HaskelINormal Form and Head Normal
FormSequential SortingTransforming Our Code into Parallel CodeKnowing What to Evaluate in ParallelWhat
Promises Does par Make?Running Our Code and Measuring PerformanceTuning for PerformanceParallel
Strategies and MapReduceSeparating Algorithm from EvaluationSeparating Algorithm from StrategyWriting a
Simple MapReduce DefinitionMapReduce and StrategiesSizing Work AppropriatelyEfficiently Finding
Line-Aligned ChunksCounting LinesFinding the Most Popular URLsConclusions25. Profiling and
OptimizationProfiling Haskell ProgramsCollecting Runtime StatisticsTime ProfilingSpace ProfilingControlling
EvaluationStrictness and Tail RecursionAdding StrictnessUnderstanding CoreAdvanced Techniquesl]
FusionTuning the Generated AssemblyConclusions26. Advanced Library Design[] Building a Bloom

Page 6

00004, tushu007.com
<<[] 0 O O O Haskell>>

FilterIntroducing the Bloom FilterUse Cases and Package LayoutBasic DesignUnboxing[d Liftingl] and
BottomThe ST MonadDesigning an API for Qualified ImportCreating a Mutable Bloom FilterThe Immutable
APICreating a Friendly InterfaceRe-Exporting Names for ConvenienceHashing ValuesTurning Two Hashes into
Manylmplementing the Easy Creation FunctionCreating a Cabal PackageDealing with Different Build
SetupsCompilation Options and Interfacing to CTesting with QuickCheckPolymorphic TestingWriting Arbitrary
Instances for ByteStringsAre Suggested Sizes Correct?Performance Analysis and TuningProfile-Driven
Performance Tuning27. Sockets and SyslogBasic NetworkingCommunicating with UDPUDP Client Example[]
syslogUDP Syslog ServerCommunicating with TCPHandling Multiple TCP StreamsTCP Syslog ServerTCP Syslog
Client28. Software Transactional MemoryThe BasicsSome Simple ExamplesSTM and SafetyRetrying a
TransactionWhat Happens When We Retry?Choosing Between AlternativesUsing Higher Order Code with
Transactionsl/O and STMCommunication Between ThreadsA Concurrent Web Link CheckerChecking a
LinkWorker ThreadsFinding LinksCommand-Line ParsingPattern GuardsPractical Aspects of STMGetting
Comfortable with Giving Up ControlUsing InvariantsA. Installing GHC and Haskell LibrariesB. Characters(]
Strings] and Escaping Rulesindex

Page 7

00004, tushu007.com
<<[] 0 O O O Haskell>>

good

0 O In this section, weve discussed how Haskell, unlike most languages, draws a cleardistinction between pure
code and I/0O actions. In languages such as C or Java, thereis no such thing as a function that is guaranteed by the
compiler to always return thesame result for the same arguments or a function that is guaranteed to never have
sideeffects. The only way to know if a given function has side effects is to read its docu-mentation and hope that its
accurate.Many bugs in programs are caused by unanticipated side effects. Still more are causedby
misunderstanding circumstances in which functions may return different results forthe same input. As
multithreading and other forms of parallelism grow increasinglycommon, it becomes more difficult to manage
global side effects.Haskells method of isolating side effects into 1/O actions provides a clear boundary.You can
always know which parts of the system may alter state and which wont. Youcan always he sure that the pure parts of
your program arent having unanticipatedresults. This helps you to think about the program. It also helps the
compiler to thinkabout it. Recent versions of ghc, for instance, can provide a level of automatic paral-lelism for the
pure parts of your code——something of a holy grail for computing.For more discussion on this topic, refer to
"Side Effects with Lazy 1/0" on page 188.

Page 8

00004, tushu007.com
<<[] 0 O 0O O Haskell>>

gobooooo

OO0 00000000DO0DbOO0oDOO0oOOoDOooooooooon
OO00O00O0OHaskelOOODOODOOODOOOOOODHaskelDOOODODOODOOOODODO
OO00oO00oo

" O 0——TrimSweeneyd EpicGamesD O O OO OO OUnreadlD 00O O0O0O0OOO" ODOODOOO

OO000000000O0O0bOO0bOOooDoOood
OO00000000000O00DO0DOO0DO0oooooooon
" [0 O ——Simon Peyton Jones.Microsoft Research Haskelld O O O O O GlasgowHaskell O O O O O O

Page 9

00004, tushu007.com
<<[] 0 O 0O O Haskell>>

goon

OO000O0O0O0OO0Haskel(DOOH)YOODOOOoOooooooboboboboboobooooooo
goooo

ODO0O0O0O0O0OHaskelDDODODOODOODOOoOoOooooobooboboboboo
ODO0O0O0O0OHaskel(DOD)ODOODOOOOOOODOooOOooOoooobobobobobooo
OHaskelODOODOODODODODODODOODODOOOOOOOOOO
OO000O0O0O0OO0OHaskelDODODODOOOO- DOOODDODODODOODOOOOO- O0OHaskell
gobboobbuoogooobooboobbooo- gobboobboooooooboboobob- 0ogg
goboboobboooooooboobbodooo- obbobboooooobobobobbooaoa
OOO00O0O0OHaskel(DOD)ODODOODOODODOOODUOUOOODHaskelDOOOOODOOOOO
gooooooo
O0000b0o0ob0o0boboobU0obobOHaskelO DD OOOOOoOobOOoOobDOoobobOoOoO
OO0O0OHaskelOOODOOOO

Page 10

00004, tushu007.com
<<[] 0 O 0O O Haskell>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 11

