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前言

　　Have We Got a Deal for You!　　Haskell is a deep language; we think learning it is a hugely rewarding
experience. We will focus on three elements as we explain why. The first is novelty： we invite you to think about
programming from a different and valuable perspective. The second is power： well show you how to create
software that is short， fast， and safe. Lastly， we offer you a lot of enjoyment： the pleasure of applying
beautiful programming techniques to solve real problems.　　Novelty　　Haskell is most likely quite different
from any language youve ever used before. Compared to the usual set of concepts in a programmers mental
toolbox， functional programming offers us a profoundly different way to think about software.　　In Haskell，
we deemphasize code that modifies data. Instead， we focus on functions that take immutable values as input and
produce new values as output. Given the same inputs， these functions always return the same results. This is a
core idea behind functional programming.　　Along with not modifying data， our Haskell functions usually
dont talk to the external world; we call these functions pure. We make a strong distinction between pure code and
the parts of our programs that read or write files， communicate over network connections， or make robot arms
move. This makes it easier to organize， reason about， and test our programs.　　We abandon some ideas that
might seem fundamental， such as having a for loop built into the language. We have other， more flexible，
ways to perform repetitive tasks. Even the way in which we evaluate expressions is different in Haskell. We defer
every computation until its result is actually needed——Haskell is a lazy language. Laziness is not merely a matter
of moving work around， it profoundly affects how we write programs.　　Power　　Throughout this book，
we will show you how Haskells alternatives to the features of traditional languages are powerful and flexible and
lead to reliable code. Haskell is positively crammed full of cutting-edge ideas about how to create great software.　
　Since pure code has no dealings with the outside world， and the data it works with is never modified， the
kind of nasty surprise in which one piece of code invisibly corrupts data used by another is very rare. Whatever
context we use a pure function in， the function will behave consistently.
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内容概要

　　Haskell is most likely quite different from any language youve ever used before. Compared to the usual set of
concepts in a programmers mental toolbox， functional programming offers us a profoundly different way to
think about software.　　In Haskell， we deemphasize code that modifies data. Instead， we focus on functions
that take immutable values as input and produce new values as output. Given the same inputs， these functions
always return the same results. This is a core idea behind functional programming.
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章节摘录

　　In this section, weve discussed how Haskell, unlike most languages, draws a cleardistinction between pure
code and I/O actions. In languages such as C or Java, thereis no such thing as a function that is guaranteed by the
compiler to always return thesame result for the same arguments or a function that is guaranteed to never have
sideeffects. The only way to know if a given function has side effects is to read its docu-mentation and hope that its
accurate.Many bugs in programs are caused by unanticipated side effects. Still more are causedby
misunderstanding circumstances in which functions may return different results forthe same input. As
multithreading and other forms of parallelism grow increasinglycommon, it becomes more difficult to manage
global side effects.Haskells method of isolating side effects into I/O actions provides a clear boundary.You can
always know which parts of the system may alter state and which wont. Youcan always he sure that the pure parts of
your program arent having unanticipatedresults. This helps you to think about the program. It also helps the
compiler to thinkabout it. Recent versions of ghc, for instance, can provide a level of automatic paral-lelism for the
pure parts of your code——something of a holy grail for computing.For more discussion on this topic, refer to
"Side Effects with Lazy I/O" on page 188.
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媒体关注与评论

　　“现代软件的最大问题在于性能、模块化、可靠性和并发性。
在《真实世界的Haskell》中，作者很好地讲授了如何使用HaskeII这一超前于当今主流的语言，来逐一
化解这些问题。
”　　——Trim Sweeney，Epic Games创始人，同时也是Unreal　游戏引擎设计者　　“这是第一本涵
盖了现实世界程序员所需一切技术的书籍。
当读罢此书，你将能够用当前所钟爱的语言写出更优秀的代码。
”　　——Simon Peyton Jones.Microsoft Research Haskell语言架构师，GlasgowHaskell 编译器设计者
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编辑推荐

　　《真实世界的Haskell(影印版)》是一本上手快且易于使用的指导书，它向你介绍这门日趋流行的
编程语言。
你将学习如何将Haskell应用于不同实践当中，从简短的脚本到要求苛刻的大型应用。
《真实世界的Haskell(影印版)》向你讲解了函数式编程的基础，帮助你加深对如何在现实世界中应
用Haskell的理解，例如输入／输出性能、数据处理、并发等等。
　　《真实世界的Haskell》能帮助你：　　·理解过程式与函数式编程之间的差异　　·学习Haskell
的特性，以及如何使用它来开发有用的程序　　·与文件系统、数据库和网络服务交互　　·编写可
以进行自动测试、代码覆盖和错误处理的代码　　·通过并发和并行编程发挥多核系统的威力　　在
《真实世界的Haskell(影印版)》中你将发现大量的实用习题和真实的Haskell程序示例，你可以修改、
编译及运行它们。
无论是否曾经使用过函数式语言，如果想要了解Haskell为何成为众多组织所选用的实用语言，《真实
世界的Haskell》是你的首选。
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