
第一图书网, tushu007.com
<<真实世界的Haskell>>

图书基本信息

书名：<<真实世界的Haskell>>

13位ISBN编号：9787564119256

10位ISBN编号：756411925X

出版时间：2010-1

出版时间：东南大学出版社

作者：[美] 沙利文,[美] 戈尔,[美] 斯图尔特

页数：670

版权说明：本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问：http://www.tushu007.com

Page 1

第一图书网, tushu007.com
<<真实世界的Haskell>>

前言

　　Have We Got a Deal for You!　　Haskell is a deep language; we think learning it is a hugely rewarding
experience. We will focus on three elements as we explain why. The first is novelty： we invite you to think about
programming from a different and valuable perspective. The second is power： well show you how to create
software that is short， fast， and safe. Lastly， we offer you a lot of enjoyment： the pleasure of applying
beautiful programming techniques to solve real problems.　　Novelty　　Haskell is most likely quite different
from any language youve ever used before. Compared to the usual set of concepts in a programmers mental
toolbox， functional programming offers us a profoundly different way to think about software.　　In Haskell，
we deemphasize code that modifies data. Instead， we focus on functions that take immutable values as input and
produce new values as output. Given the same inputs， these functions always return the same results. This is a
core idea behind functional programming.　　Along with not modifying data， our Haskell functions usually
dont talk to the external world; we call these functions pure. We make a strong distinction between pure code and
the parts of our programs that read or write files， communicate over network connections， or make robot arms
move. This makes it easier to organize， reason about， and test our programs.　　We abandon some ideas that
might seem fundamental， such as having a for loop built into the language. We have other， more flexible，
ways to perform repetitive tasks. Even the way in which we evaluate expressions is different in Haskell. We defer
every computation until its result is actually needed——Haskell is a lazy language. Laziness is not merely a matter
of moving work around， it profoundly affects how we write programs.　　Power　　Throughout this book，
we will show you how Haskells alternatives to the features of traditional languages are powerful and flexible and
lead to reliable code. Haskell is positively crammed full of cutting-edge ideas about how to create great software.　
　Since pure code has no dealings with the outside world， and the data it works with is never modified， the
kind of nasty surprise in which one piece of code invisibly corrupts data used by another is very rare. Whatever
context we use a pure function in， the function will behave consistently.

Page 2

第一图书网, tushu007.com
<<真实世界的Haskell>>

内容概要

　　Haskell is most likely quite different from any language youve ever used before. Compared to the usual set of
concepts in a programmers mental toolbox， functional programming offers us a profoundly different way to
think about software.　　In Haskell， we deemphasize code that modifies data. Instead， we focus on functions
that take immutable values as input and produce new values as output. Given the same inputs， these functions
always return the same results. This is a core idea behind functional programming.

Page 3

第一图书网, tushu007.com
<<真实世界的Haskell>>

书籍目录

Preface1. Getting StartedYour Haskell EnvironmentGetting Started with ghci， the InterpreterBasic Interaction：
Using ghci as a CalculatorSimple ArithmeticAn Arithmetic Quirk： Writing Negative NumbersBoolean Logic，
Operators， and Value ComparisonsOperator Precedence and AssociativityUndefined Values， and Introducing
VariablesDealing with Precedence and Associativity RulesCommand-Line Editing in ghciListsOperators on
ListsStrings and CharactersFirst Steps with TypesA Simple Program2. Types and FunctionsWhy Care About
Types?Haskell’s Type SystemStrong TypesStatic TypesType InferenceWhat to Expect from the Type
SystemSome Common Basic TypesFunction ApplicationUseful Composite Data Types： Lists and
TuplesFunctions over Lists and TuplesPassing an Expression to a FunctionFunction Types and PurityHaskell
Source Files， and Writing Simple FunctionsJust What Is a Variable， Anyway?Conditional
EvaluationUnderstanding Evaluation by ExampleLazy EvaluationA More Involved ExampleRecursionEnding the
RecursionReturning from the RecursionWhat Have We Learned?Polymorphism in HaskellReasoning About
Polymorphic FunctionsFurther ReadingThe Type of a Function of More Than One ArgumentWhy the Fuss over
Purity?Conclusion3. Defining Types， Streamlining FunctionsDefining a New Data TypeNaming Types and
ValuesType SynonymsAlgebraic Data TypesTuples， Algebraic Data Types， and When to Use EachAnalogues
to Algebraic Data Types in Other LanguagesPattern MatchingConstruction and DeconstructionFurther
AdventuresVariable Naming in PatternsThe Wild Card PatternExhaustive Patterns and Wild CardsRecord
SyntaxParameterized TypesRecursive TypesReporting ErrorsA More Controlled ApproachIntroducing Local
VariablesShadowingThe where ClauseLocal Functions， Global VariablesThe Offside Rule and Whitespace in an
ExpressionA Note About Tabs Versus SpacesThe Offside Rule Is Not MandatoryThe case ExpressionCommon
Beginner Mistakes with PatternsIncorrectly Matching Against a VariableIncorrectly Trying to Compare for
EqualityConditional Evaluation with Guards4. Functional ProgrammingThinking in HaskellA Simple
Command-Line FrameworkWarming Up： Portably Splitting Lines of TextA Line-Ending Conversion
ProgramInfix FunctionsWorking with ListsBasic List ManipulationSafely and Sanely Working with Crashy
FunctionsPartial and Total FunctionsMore Simple List ManipulationsWorking with SublistsSearching
ListsWorking with Several Lists at OnceSpecial String-Handling FunctionsHow to Think About LoopsExplicit
RecursionTransforming Every Piece of InputMapping over a ListSelecting Pieces of InputComputing One Answer
over a CollectionThe Left FoldWhy Use Folds， Maps， and Filters?Folding from the RightLeft Folds， Laziness
， and Space LeaksFurther ReadingAnonymous (lambda) FunctionsPartial Function Application and
CurryingSectionsAs-patternsCode Reuse Through CompositionUse Your Head WiselyTips for Writing Readable
CodeSpace Leaks and Strict EvaluationAvoiding Space Leaks with seqLearning to Use seq5. Writing a Library：
Working with JSON DataA Whirlwind Tour of JSONRepresenting JSON Data in HaskellThe Anatomy of a
Haskell ModuleCompiling Haskell SourceGenerating a Haskell Program and Importing ModulesPrinting JSON
DataType Inference Is a Double-Edged SwordA More General Look at RenderingDeveloping Haskell Code
Without Going NutsPretty Printing a StringArrays and Objects， and the Module HeaderWriting a Module
HeaderFleshing Out the Pretty-Printing LibraryCompact RenderingTrue Pretty PrintingFollowing the Pretty
PrinterCreating a PackageWriting a Package DescriptionGHC’s Package ManagerSetting Up， Building， and
InstallingPractical Pointers and Further Reading6. Using TypeclassesThe Need for TypeclassesWhat Are
Typeclasses?Declaring Typeclass InstancesImportant Built-in TypeclassesShowReadSerialization with read and
showNumeric TypesEquality， Ordering， and ComparisonsAutomatic DerivationTypeclasses at Work：
Making JSON Easier to UseMore Helpful ErrorsMaking an Instance with a Type SynonymLiving in an Open
WorldWhen Do Overlapping Instances Cause Problems?Relaxing Some Restrictions on TypeclassesHow Does
Show Work for Strings?How to Give a Type a New IdentityDifferences Between Data and Newtype
DeclarationsSummary： The Three Ways of Naming TypesJSON Typeclasses Without Overlapping InstancesThe
Dreaded Monomorphism RestrictionConclusion7. I/OClassic I/O in HaskellPure Versus I/OWhy Purity
MattersWorking with Files and HandlesMore on openFileClosing HandlesSeek and TellStandard Input， Output

Page 4

第一图书网, tushu007.com
<<真实世界的Haskell>>

， and ErrorDeleting and Renaming FilesTemporary FilesExtended Example： Functional I/O and Temporary
FilesLazy I/OhGetContentsreadFile and writeFileA Word on Lazy OutputinteractThe IO
MonadActionsSequencingThe True Nature of ReturnIs Haskell Really Imperative?Side Effects with Lazy
I/OBufferingBuffering ModesFlushing The BufferReading Command-Line ArgumentsEnvironment Variables8.
Efficient File Processing， Regular Expressions， and Filename MatchingEfficient File ProcessingBinary I/O and
Qualified ImportsText I/OFilename MatchingRegular Expressions in HaskellThe Many Types of ResultMore
About Regular ExpressionsMixing and Matching String TypesOther Things You Should KnowTranslating a glob
Pattern into a Regular ExpressionAn important Aside： Writing Lazy FunctionsMaking Use of Our Pattern
MatcherHandling Errors Through API DesignPutting Our Code to Work9. I/O Case Study： A Library for
Searching the FilesystemThe find CommandStarting Simple： Recursively Listing a DirectoryRevisiting
Anonymous and Named FunctionsWhy Provide Both mapM and forM?A Naive Finding FunctionPredicates：
From Poverty to Riches， While Remaining PureSizing a File SafelyThe Acquire-Use-Release CycleA
Domain-Specific Language for PredicatesAvoiding Boilerplate with LiftingGluing Predicates TogetherDefining and
Using New OperatorsControlling TraversalDensity， Readability， and the Learning ProcessAnother Way of
Looking at TraversalUseful Coding GuidelinesCommon Layout Styles10. Code Case Study： Parsing a Binary
Data FormatGrayscale FilesParsing a Raw PGM FileGetting Rid of Boilerplate CodeImplicit StateThe Identity
ParserRecord Syntax， Updates， and Pattern MatchingA More Interesting ParserObtaining and Modifying the
Parse StateReporting Parse ErrorsChaining Parsers TogetherIntroducing FunctorsConstraints on Type Definitions
Are BadInfix Use of fmapFlexible InstancesThinking More About FunctorsWriting a Functor Instance for
ParseUsing Functors for ParsingRewriting Our PGM ParserFuture Directions11. Testing and Quality
AssuranceQuickCheck： Type-Based TestingTesting for PropertiesTesting Against a ModelTesting Case Study：
Specifying a Pretty PrinterGenerating Test DataTesting Document ConstructionUsing Lists as a ModelPutting It
All TogetherMeasuring Test Coverage with HPC12. Barcode RecognitionA Little Bit About BarcodesEAN-13
EncodingIntroducing ArraysArrays and LazinessFolding over ArraysModifying Array ElementsEncoding an
EAN-13 BarcodeConstraints on Our DecoderDivide and ConquerTurning a Color Image into Something
TractableParsing a Color ImageGrayscale ConversionGrayscale to Binary and Type SafetyWhat Have We Done to
Our Image?Finding Matching DigitsRun Length EncodingScaling Run Lengths， and Finding Approximate
MatchesList ComprehensionsRemembering a Match’s ParityChunking a ListGenerating a List of Candidate
DigitsLife Without Arrays or Hash TablesA Forest of SolutionsA Brief Introduction to MapsFurther
ReadingTurning Digit Soup into an AnswerSolving for Check Digits in ParallelCompleting the Solution Map with
the First DigitFinding the Correct SequenceWorking with Row DataPulling It All TogetherA Few Comments on
Development Style13. Data StructuresAssociation ListsMapsFunctions Are Data， TooExtended Example：
/etc/passwdExtended Example： Numeric TypesFirst StepsCompleted CodeTaking Advantage of Functions as
DataTurning Difference Lists into a Proper LibraryLists， Difference Lists， and MonoidsGeneral-Purpose
Sequences14. MonadsRevisiting Earlier Code ExamplesMaybe ChainingImplicit StateLooking for Shared
PatternsThe Monad TypeclassAnd Now， a Jargon MomentUsing a New Monad： Show Your
Work!Information HidingControlled EscapeLeaving a TraceUsing the Logger MonadMixing Pure and Monadic
CodePutting a Few Misconceptions to RestBuilding the Logger MonadSequential Logging， Not Sequential
EvaluationThe Writer MonadThe Maybe MonadExecuting the Maybe MonadMaybe at Work， and Good API
DesignThe List MonadUnderstanding the List MonadPutting the List Monad to WorkDesugaring of do
BlocksMonads as a Programmable SemicolonWhy Go Sugar-Free?The State MonadAlmost a State MonadReading
and Modifying the StateWill the Real State Monad Please Stand Up?Using the State Monad： Generating Random
ValuesA First Attempt at PurityRandom Values in the State MonadRunning the State MonadWhat About a Bit
More State?Monads and FunctorsAnother Way of Looking at MonadsThe Monad Laws and Good Coding
Style15. Programming with MonadsGolfing Practice： Association ListsGeneralized LiftingLooking for
AlternativesThe Name mplus Does Not Imply AdditionRules for Working with MonadPlusFailing Safely with
MonadPlusAdventures in Hiding the PlumbingSupplying Random NumbersAnother Round of GolfSeparating

Page 5

第一图书网, tushu007.com
<<真实世界的Haskell>>

Interface from ImplementationMultiparameter TypeclassesFunctional DependenciesRounding Out Our
ModuleProgramming to a Monad’s InterfaceThe Reader MonadA Return to Automated DerivingHiding the IO
MonadUsing a newtypeDesigning for Unexpected UsesUsing TypeclassesIsolation and TestingThe Writer Monad
and ListsArbitrary I/O Revisited16. Using ParsecFirst Steps with Parsec： Simple CSV ParsingThe sepBy and
endBy CombinatorsChoices and ErrorsLookaheadError HandlingExtended Example： Full CSV ParserParsec
and MonadPlusParsing a URL-Encoded Query StringSupplanting Regular Expressions for Casual ParsingParsing
Without VariablesApplicative Functors for ParsingApplicative Parsing by ExampleParsing JSON DataParsing a
HTTP RequestBacktracking and Its DiscontentsParsing Headers17. Interfacing with C： The FFIForeign
Language Bindings： The BasicsBe Careful of Side EffectsA High-Level WrapperRegular Expressions for Haskell
： A Binding for PCRESimple Tasks： Using the C PreprocessorBinding Haskell to C with hsc2hsAdding Type
Safety to PCREBinding to ConstantsAutomating the BindingPassing String Data Between Haskell and CTyped
PointersMemory Management： Let the Garbage Collector Do the WorkA High-Level Interface： Marshaling
DataMarshaling ByteStringsAllocating Local C Data： The Storable ClassPutting It All TogetherMatching on
StringsExtracting Information About the PatternPattern Matching with SubstringsThe Real Deal： Compiling and
Matching Regular Expressions18. Monad TransformersMotivation： Boilerplate AvoidanceA Simple Monad
Transformer ExampleCommon Patterns in Monads and Monad TransformersStacking Multiple Monad
TransformersHiding Our WorkMoving Down the StackWhen Explicit Lifting Is NecessaryUnderstanding Monad
Transformers by Building OneCreating a Monad TransformerMore Typeclass InstancesReplacing the Parse Type
with a Monad StackTransformer Stacking Order Is ImportantPutting Monads and Monad Transformers into
PerspectiveInterference with Pure CodeOverdetermined OrderingRuntime OverheadUnwieldy InterfacesPulling It
All Together19. Error HandlingError Handling with Data TypesUse of MaybeUse of EitherExceptionsFirst Steps
with ExceptionsLaziness and Exception HandlingUsing handleSelective Handling of ExceptionsI/O
ExceptionsThrowing ExceptionsDynamic ExceptionsError Handling in MonadsA Tiny Parsing Framework20.
Systems Programming in HaskellRunning External ProgramsDirectory and File InformationProgram
TerminationDates and TimesClockTime and CalendarTimeFile Modification TimesExtended Example：
PipingUsing Pipes for RedirectionBetter PipingFinal Words on Pipes21. Using DatabasesOverview of
HDBCInstalling HDBC and DriversConnecting to DatabasesTransactionsSimple QueriesSqlValueQuery
ParametersPrepared StatementsReading ResultsReading with StatementsLazy ReadingDatabase MetadataError
Handling22. Extended Example： Web Client ProgrammingBasic TypesThe DatabaseThe
ParserDownloadingMain Program23. GUI Programming with gtk2hsInstalling gtk2hsOverview of the GTK+
StackUser Interface Design with GladeGlade ConceptsEvent-Driven ProgrammingInitializing the GUIThe Add
Podcast WindowLong-Running TasksUsing Cabal24. Concurrent and Multicore ProgrammingDefining
Concurrency and ParallelismConcurrent Programming with ThreadsThreads Are NondeterministicHiding
LatencySimple Communication Between ThreadsThe Main Thread and Waiting for Other ThreadsSafely
Modifying an MVarSafe Resource Management： A Good Idea， and Easy BesidesFinding the Status of a
ThreadWriting Tighter CodeCommunicating over ChannelsUseful Things to Know AboutMVar and Chan Are
NonstrictChan Is UnboundedShared-State Concurrency Is Still HardDeadlockStarvationIs There Any
Hope?Using Multiple Cores with GHCRuntime OptionsFinding the Number of Available Cores from
HaskellChoosing the Right RuntimeParallel Programming in HaskellNormal Form and Head Normal
FormSequential SortingTransforming Our Code into Parallel CodeKnowing What to Evaluate in ParallelWhat
Promises Does par Make?Running Our Code and Measuring PerformanceTuning for PerformanceParallel
Strategies and MapReduceSeparating Algorithm from EvaluationSeparating Algorithm from StrategyWriting a
Simple MapReduce DefinitionMapReduce and StrategiesSizing Work AppropriatelyEfficiently Finding
Line-Aligned ChunksCounting LinesFinding the Most Popular URLsConclusions25. Profiling and
OptimizationProfiling Haskell ProgramsCollecting Runtime StatisticsTime ProfilingSpace ProfilingControlling
EvaluationStrictness and Tail RecursionAdding StrictnessUnderstanding CoreAdvanced Techniques：
FusionTuning the Generated AssemblyConclusions26. Advanced Library Design： Building a Bloom

Page 6

第一图书网, tushu007.com
<<真实世界的Haskell>>

FilterIntroducing the Bloom FilterUse Cases and Package LayoutBasic DesignUnboxing， Lifting， and
BottomThe ST MonadDesigning an API for Qualified ImportCreating a Mutable Bloom FilterThe Immutable
APICreating a Friendly InterfaceRe-Exporting Names for ConvenienceHashing ValuesTurning Two Hashes into
ManyImplementing the Easy Creation FunctionCreating a Cabal PackageDealing with Different Build
SetupsCompilation Options and Interfacing to CTesting with QuickCheckPolymorphic TestingWriting Arbitrary
Instances for ByteStringsAre Suggested Sizes Correct?Performance Analysis and TuningProfile-Driven
Performance Tuning27. Sockets and SyslogBasic NetworkingCommunicating with UDPUDP Client Example：
syslogUDP Syslog ServerCommunicating with TCPHandling Multiple TCP StreamsTCP Syslog ServerTCP Syslog
Client28. Software Transactional MemoryThe BasicsSome Simple ExamplesSTM and SafetyRetrying a
TransactionWhat Happens When We Retry?Choosing Between AlternativesUsing Higher Order Code with
TransactionsI/O and STMCommunication Between ThreadsA Concurrent Web Link CheckerChecking a
LinkWorker ThreadsFinding LinksCommand-Line ParsingPattern GuardsPractical Aspects of STMGetting
Comfortable with Giving Up ControlUsing InvariantsA. Installing GHC and Haskell LibrariesB. Characters，
Strings， and Escaping RulesIndex

Page 7

第一图书网, tushu007.com
<<真实世界的Haskell>>

章节摘录

　　In this section, weve discussed how Haskell, unlike most languages, draws a cleardistinction between pure
code and I/O actions. In languages such as C or Java, thereis no such thing as a function that is guaranteed by the
compiler to always return thesame result for the same arguments or a function that is guaranteed to never have
sideeffects. The only way to know if a given function has side effects is to read its docu-mentation and hope that its
accurate.Many bugs in programs are caused by unanticipated side effects. Still more are causedby
misunderstanding circumstances in which functions may return different results forthe same input. As
multithreading and other forms of parallelism grow increasinglycommon, it becomes more difficult to manage
global side effects.Haskells method of isolating side effects into I/O actions provides a clear boundary.You can
always know which parts of the system may alter state and which wont. Youcan always he sure that the pure parts of
your program arent having unanticipatedresults. This helps you to think about the program. It also helps the
compiler to thinkabout it. Recent versions of ghc, for instance, can provide a level of automatic paral-lelism for the
pure parts of your code——something of a holy grail for computing.For more discussion on this topic, refer to
"Side Effects with Lazy I/O" on page 188.

Page 8

第一图书网, tushu007.com
<<真实世界的Haskell>>

媒体关注与评论

　　“现代软件的最大问题在于性能、模块化、可靠性和并发性。
在《真实世界的Haskell》中，作者很好地讲授了如何使用HaskeII这一超前于当今主流的语言，来逐一
化解这些问题。
”　　——Trim Sweeney，Epic Games创始人，同时也是Unreal　游戏引擎设计者　　“这是第一本涵
盖了现实世界程序员所需一切技术的书籍。
当读罢此书，你将能够用当前所钟爱的语言写出更优秀的代码。
”　　——Simon Peyton Jones.Microsoft Research Haskell语言架构师，GlasgowHaskell 编译器设计者

Page 9

第一图书网, tushu007.com
<<真实世界的Haskell>>

编辑推荐

　　《真实世界的Haskell(影印版)》是一本上手快且易于使用的指导书，它向你介绍这门日趋流行的
编程语言。
你将学习如何将Haskell应用于不同实践当中，从简短的脚本到要求苛刻的大型应用。
《真实世界的Haskell(影印版)》向你讲解了函数式编程的基础，帮助你加深对如何在现实世界中应
用Haskell的理解，例如输入／输出性能、数据处理、并发等等。
　　《真实世界的Haskell》能帮助你：　　·理解过程式与函数式编程之间的差异　　·学习Haskell
的特性，以及如何使用它来开发有用的程序　　·与文件系统、数据库和网络服务交互　　·编写可
以进行自动测试、代码覆盖和错误处理的代码　　·通过并发和并行编程发挥多核系统的威力　　在
《真实世界的Haskell(影印版)》中你将发现大量的实用习题和真实的Haskell程序示例，你可以修改、
编译及运行它们。
无论是否曾经使用过函数式语言，如果想要了解Haskell为何成为众多组织所选用的实用语言，《真实
世界的Haskell》是你的首选。

Page 10

第一图书网, tushu007.com
<<真实世界的Haskell>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介，请支持正版图书。

更多资源请访问:http://www.tushu007.com

Page 11

