000004, tushu007.com
<<Ruby O OO O 0O >>

guoooon
O00<<Ruby 0O 0OO>>
1300 ISBNUO O 0 9787564119355
1000 ISBNO O 10 7564119357
0dodon2010-1
gooooboooogooao
gooodg

000309

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

O 000 0O, tushu007.com
<<Ruby U OJ 00 0 >>

gd

In 1993, when Ruby was born, Ruby had nothing. No user base except for me and a few close friends. No tradition.
No idioms except for a few inherited from Perl, though | regretted most of them afterward. But the language forms
the community. The community nourishes the culture. In the last decade, users increased——hundreds of
thousands of programmers fell in love with Ruby. They put great effort into the language and its community.
Projects were born. Idioms tailored for Ruby were invented and introduced. Ruby was influenced by Lisp and

other functional programming languages. Ruby formed relationships between technologies and methodologies
such as test-driven development and duck typing. This book introduces a map of best practices of the language as
of 2009. I've known Greg Brown for years, and he is an experienced Rub)/developer who has contributed a lot of
projects to the language, such as Ruport and Prawn. | am glad he compiled his knowledge into this book.

Page 2

000004, tushu007.com
<<Ruby O O O 0O >>

goon

OO000000O00OO0Rubyd OO0

ORubyD OO ODOODOODODODOODOUOCORbyD OOOOODOODO
ORubyOODOO@UO)ORubyOOPrawnD DD ODOODOODOODOOOOOOOORuydDODOO
goboboobbouguoooon
gobbobobbudggoguobobbbudoogouboobbuodoooon
ODO0ORubyOOOO@UOO)YWOOOOOOOOOODODODODODODODOOOOOOOODOO
gooooooo

ORubyO ODOODODODOOO*00RubyD0 0 O0D0O0OO0ODOODOO0*00D00D0O0ODOODOORubyd
gobobobboooooobobbooooxobbobbodooooonbobobbooooon
gooo*oodgooobboobbooooooo*obbodoooobboobobboooooon
O0O0*0000b000b0bo0b00b0bo0bO0O*0bRbyD D O0D0O0O0ODODO0ODOORuUby
oooo@oo)yoooobooboobobooboooboobooboboobooobo
ORubyDODOOOOOOODDOO0OOOODODOO0ODOOODODOODOOOO

Page 3

000004, tushu007.com
<<Ruby O OO O 0O >>

goon

Gregory T.BrownU DO D UODOO0OOO0O0OORubyD D ODOOOOOO0OO0OO0ODO0ORUbyD OO
goboboodd

OORuportD OO OD0OODOOPawnD OO OORubyD OO OO OPDFO OO

Page 4

00000, tushu007.com
<<Ruby OO OO 00 0 >>

good

Foreword Preface 1. Driving Code Through Tests A Quick Note on Testing Frameworks Designing for Testability
Testing Fundamentals Well-Focused Examples Testing Exceptions Run the Whole Suite at Once Advanced
Testing Techniques Using Mocks and Stubs Testing Complex Output Keeping Things Organized Embedding
Tests in Library Files Test Helpers Custom Assertions Conclusions 2. Designing Beautiful APIs Designing for
Convenience: Ruport’ s Table() feature Ruby’ s Secret Power: Flexible Argument Processing Standard Ordinal
Arguments Ordinal Arguments with Optional Parameters Pseudo-Keyword Arguments Treating Arguments As an
Array Ruby’ s Other Secret Power: Code Blocks Working with Enumerable Using Blocks to Abstract Pre- and
Postprocessing Blocks As Dynamic Callbacks Blocks for Interface Simplification Avoiding Surprises Use
attr_reader, attr_writer, and attr_accessor Understand What method? and method! Mean Make Use of Custom
Operators Conclusions 3. Mastering the Dynamic Toolkit BlankSlate: A BasicObject on Steroids Building Flexible
Interfaces Making instance_eval() Optional Handling Messages with method_missing() and send()
Dual-Purpose Accessors Implementing Per-Object Behavior Extending and Modifying Preexisting Code Adding
New Functionality Modification via Aliasing Per-Object Modification Building Classes and Modules
Programmatically Registering Hooks and Callbacks Detecting Newly Added Functionality Tracking Inheritance
Tracking Mixins Conclusions 4. Text Processing and File Management Line-Based File Processing with State
Tracking Regular Expressions Don’ t Work Too Hard Anchors Are Your Friends Use Caution When Working
with Quantifiers Working with Files Using Pathname and FileUtils The tempfile Standard Library Automatic
Temporary Directory Handling Collision Avoidance Same Old I/0 Operations Automatic Unlinking
Text-Processing Strategies Advanced Line Processing Atomic Saves Conclusions 5. Functional Programming
Techniques Laziness Can Be a Virtue (A Look at lazy.rb) Minimizing Mutable State and Reducing Side Effects
Modular Code Organization Memoization Infinite Lists Higher-Order Procedures Conclusions 6. When Things
Go Wrong A Process for Debugging Ruby Code Capturing the Essence of a Defect Scrutinizing Your Code
Utilizing Reflection Improving inspect Output Finding Needles in a Haystack Working with Logger Conclusions
7. Reducing Cultural Barriers m17n by Example: A Look at Ruby’ s CSV Standard Library Portable m17n
Through UTF-8 Transcoding Source Encodings Working with Files Transcoding User Input in an Organized
Fashion m17n in Standalone Scripts Inferring Encodings from Locale Customizing Encoding Defaults m17n-Safe
Low-Level Text Processing Localizing Your Code Conclusions 8. Skillful Project Maintenance Exploring a
Well-Organized Ruby Project (Haml) Conventions to Know About What Goes ina README Laying Out Your
Library Executables Tests Examples APl Documentation via RDoc Basic Documentation Techniques and
Guidelines Controlling Output with RDoc Directives The RubyGems Package Manager Writing a
Gem::Specification Working with Dependencies Rake: Ruby’ s Built-in Build Utility Conclusions A. Writing
Backward-Compatible Code B. Leveraging Ruby’ s Standard Library C. Ruby Worst Practices Index

Page 5

00000, tushu007.com
<<Ruby OO OO 00 0 >>

good

00 O O Rake is a very powerful tool that deserves its own chapter or even its own cookbook. There are a ton of
useful recipes out there in the wild, so be sure to make the Rakefileone of your first stops in any new codebase you
need to review. Understanding andusing Rake effectively is key to successfully managing any moderately complex
Rubyproject, so be sure not to overlook its significance and practical utility.If you want to make the most out of this
tool, there are just a few things to keep in mind:Rake provides custom tasks for common needs such as generating
RDoc, runningunit tests and packaging up a project for distribution. Because these tasks are highlyconfigurable, it is
better to use them than to reinvent the wheel.Any other repetitive action that is necessary for maintaining your
project can bewrapped in a task to simplify things. Typically, any lengthy command that needsto be run in the shell
is fair game for this sort of simplification.Any task that has a preceding descl] [1 call will be listed with a meaningful
messagein the rake ——tasks output for your project.Rake’s ability to define prerequisite tasks allows you to build
dependency-basedworkflows that allow you to model multiple-step tasks as needed.Namespaces can be used to
segment off tasks into their own subspaces, minimizingthe risk of naming clashes.!'ve tried to stick mainly to the
easily overlooked aspects of Rake here, but there is awhole lot that we could have covered and didn't. Be sure to
consult the Rake docu-mentation if you're interested in finding out more.Depending on what you were looking
for, this chapter may have been a bit differentfrom what you were expecting based on the title. However, what you
will find is thatthe things we've discussed here will really take you far when it comes to improving themaintainability
of your projects. Though far from glamorous, things like good docu-mentation, well-organized folders and files,
and a way to automate as much of the gruntwork as possible does a whole lot for your projects.Poorly maintained
projects can be a huge drain on developer productivity and morale,yet nicely curated code can be downright
enjoyable to work with, even if you're brand-new to a project. The tools and techniques we've discussed so far
aren't going to makemaintenance completely painless, but will still provide a solid foundation to work offof that
will grow over time.

Page 6

000004, tushu007.com
<<Ruby O O O 0O >>

gobooooo

“hObugoooobbbbbuooooobbbbbbodagd

" [0 O ——a—Brad Ediger] Madriska Media Group [0 [0 0 00 00 0 0 O O O O Advanced RailsC] [0 O'Reilly]
OO0 000000000000 000000000O0RubyDOO0ODOODOOO0OOOO
OORubyDO OODOODODOODOODOOORUbyDODOODOO

" OO0 ——eremy McAnallyOO ENTPO OO0 00O 0O O O O Ruby in Practiced O Manningd O O O OO “
OO000000000000D0000000000Rubyd 00O ODOODOO

" OO0—lamesEdward Gray IO OO OO ORubyl90CSVOO OO OO

Page 7

000004, tushu007.com
<<Ruby O OO O 0O >>

goon

ORubyOOOO@UO)YWOOOOOoOOOOoOOoOO

Page 8

000004, tushu007.com
<<Ruby O OO O 0O >>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 9

