激光光谱学

出版时间:2008-8  出版社:世界图书出版公司  作者:德姆特勒德  页数:987  
Tag标签:无  

前言

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

内容概要

  《激光光谱学》系统介绍了现代激光光谱学中的基本理论,方法和应用。《激光光谱学》选题丰富,阐述清楚深刻,注重实际应用,已经成为一本经典的激光光谱学研究生教材和参考用书。此次影印的是最新的第三版。在前两版的基础上,作者做了全面的修订和增补,介绍了激光光谱学最新的实验技术和理论进展,例如:外腔中的倍频,可调控的窄带紫外光源,更灵敏的检测技术,可调谐飞秒和分飞秒激光器(X光区域和阿秒范围),可控原子分子激发,相干物质波,还有更多在化学分析,医疗诊断和工程等方面的应用。适合从事激光光谱学研究的物理学家和化学物理学家以及众多的工程人员学习和参考。  《激光光谱学》特色:(1)内容非常丰富,涵盖了激光光谱学中众多分支,并附有全面的参考文献。(2)把重要的概念和公式用边框括起来,方便读者查阅。   读者对象:适用于物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员和工程师。  目次:简介;光的吸收和发散;非线性光谱;激光拉曼光谱;束中的激光光谱;光泵谱和双共振技术;时间分辨的激光光谱;相干光谱;碰撞过程中的激光光谱;激光光谱新进展;激光光谱的应用;参考文献;主题索引。

作者简介

  德姆特勒德,德国凯泽斯劳滕大学教授,著名激光光谱学专家。创建了高分辨率激光光谱技术及其在原子分子理学中的应用这一研究领域。1995年获得由德国物理学会和物理研究所颁发的马克思—博恩奖。2000年获得洪堡基金会颁发的海森堡奖。

书籍目录

1.Introduction 2.Absorption and Emission of Light  2.1 Cavity Modes  2.2 Thermal Radiation and Planck's Law  2.3 Absorption, Induced, and Spontaneous Emission  2.4 Basic Photometric Quantities  2.5 Polarization of Light  2.6 Absorption and Emission Spectra  2.7 Transition Probabilities  2.8 Coherence Properties of Radiation Fields  2.9 Coherence of Atomic Systems  Problems 3.Widths and Profiles of Spectral Lines  3.1 Natural Linewidth  3.2 Doppler Width  3.3 Collisional Broadening of Spectral Lines  3.4 Transit-Time Broadening  3.5 Homogeneous and Inhomogeneous Line Broadening  3.6 Saturation and Power Broadening  3.7 Spectral Line Profiles in Liquids and Solids  Problems 4.Spectroscopic Instrumentation  4.1 Spectrographs and Monochromators  4.2 Interferometers  4.3 Comparison Between Spectrometers and Interferometers  4.4 Accurate Wavelength Measurements  4.5 Detection of Light  4.6 Conclusions  Problems 5.Lasers as Spectroscopic Light Sources  5.1 Fundamentals of Lasers  5.2 Laser Resonators  5.3 Spectral Characteristics of Laser Emission  5.4 Experimental Realization of Single-Mode Lasers  5.5 Controlled Wavelength Tuning of Single-Mode Lasers  5.6 Linewidths of Single-Mode Lasers  5.7 Tunable Lasers  5.8 Nonlinear Optical Mixing Techniques  5.9 Gaussian Beams  Problems 6.Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers  6.1 Advantages of Lasers in Spectroscopy  6.2 High-Sensitivity Methods of Absorption Spectroscopy  6.3 Direct Determination of Absorbed Photons  6.4 Ionization Spectroscopy  6.5 Optogalvanic Spectroscopy  6.6 Velocity-Modulation Spectroscopy  6.7 Laser Magnetic Resonance and Stark Spectroscopy  6.8 Laser-Induced Fluorescence  6.9 Comparison Between the Different Methods  Problems 7.Nonlinear Spectroscopy  7.1 Linear and Nonlinear Absorption  7.2 Saturation of Inhomogeneous Line Profiles  7.3 Saturation Spectroscopy  7.4 Polarization Spectroscopy  7.5 Multiphoton Spectroscopy  7.6 Special Techniques of Nonlinear Spectroscopy  7.7 Conclusion  Problems 8.Laser Raman Spectroscopy  8.1 Basic Considerations  8.2 Experimental Techniques of Linear Laser Saman Spectroscopy  8.3 Nonlinear Raman Spectroscopy   8.4 Special Techniques 8.5 Applications of Laser Raman Spectroscopy  Problems 9.Laser Spectroscopy in Molecular Beams  9.1 Reduction of Doppler Width  9.2 Adiabatic Cooling in Supersonic Beams  9.3 Formation and Spectroscopy of Clusters and Van der Waals Molecules in Cold Molecular Beams  9.4 Nonlinear Spectroscopy in Molecular Beams  9.5 Laser Spectroscopy in Fast Ion Beams  9.6 Applications of FIBLAS  9.7 Spectroscopy in Cold Ion Beams  9.8 Combination of Molecular Beam Laser Spectroscopy and Mass Spectrometry  Problems 10.Optical Pumping and Double-Resonance Techniques  10.1 Optical Pumping  10.2 Optical-RF Double-Resonance Technique  10.3 Optical-Microwave Double Resonance  10.4 Optical-Optical Double Resonance  10.5 Special Detection Schemes of Double-Resonance Spectroscopy  Problems 11.Time-Resolved Laser Spectroscopy  11.1 Generation of Short Laser Pulses  11.2 Measurement of Ultrashort Pulses  11.3 Lifetime Measurement with Lasers  11.4 Pump-and-Probe Technique  Problems 12.Coherent Spectroscopy  12.1 Level-Crossing Spectroscopy  12.2 Quantum-Beat Spectroscopy  12.3 Excitation and Detection of Wave Packets in Atoms and Molecules  12.4 Optical Pulse-Train Interference Spectroscopy  12.5 Photon Echoes  12.6 Optical Nutation and Free-Induction Decay  12.7 Heterodyne Spectroscopy  12.8 Correlation Spectroscopy  Problems 13.Laser Spectroscopy of Collision Processes  13.1 High-Resolution Laser Spectroscopy of Collisional Line Broadening and Line Shifts  13.2 Measurements of Inelastic Collision Cross Sections of Excited Atoms and Molecules  13.3 Spectroscopic Techniques for Measuring Collision-Induced Transitions in the Electronic Ground State of Molecules  13.4 Spectroscopy of Reactive Collisions  13.5 Spectroscopic Determination of Differential Collision Cross Sections in Crossed Molecular Beams  13.6 Photon-Assisted Collisional Energy Transfer  13.7 Photoassociation Spectroscopy of Colliding Atoms  Problems 14.New Developments in Laser Spectroscopy  14.1 Optical Cooling and Trapping of Atoms  14.2 Spectroscopy of Single Ions  14.3 Optical Ramsey-Fringes  14.4 Atom Interferometry  14.5 The One-Atom Maser  14.6 Spectral Resolution Within the Natural Linewidth  14.7 Absolute optical Frequency Measurement and Optical Frequency Standards  14.8 Squeezing 15.Applications of Laser Spectroscopy  15.1 Applications in Chemistry  15.2 Environmental Research with Lasers  15.3 Applications to Technical Problems  15.4 Applications in Biology  15.5 Medical Applications of Laser Spectroscopy  15.6 Concluding Remarks References Subject Index

章节摘录

插图:

编辑推荐

《激光光谱学(第3版)》特色:(1)内容非常丰富,涵盖了激光光谱学中众多分支,并附有全面的参考文献。(2)把重要的概念和公式用边框括起来,方便读者查阅。 读者对象:适用于物理,化学和材料专业的高年级本科生、研究生和相关专业的科研人员和工程师。

图书封面

图书标签Tags

评论、评分、阅读与下载


    激光光谱学 PDF格式下载


用户评论 (总计11条)

 
 

  •   这本书写的真不错,内容丰富,写的较为详细,是学材料、物理、化学专业的一本较为不错的参考书。但唯一不足的是印刷质量不行,不知道是什么原因,跟复印的差不多。
  •   非常经典的的好书!值得购买~!
  •   感觉硬壳被压坏了一些但是不影响大局
  •   印刷和纸张都不错!
  •   看的时候需要带着字典。。
  •   Averygoodbook!
  •   是一本很经典的书,唯一不足的是价格太贵了。
  •   书影印质量不是很好,不过一百多能买到这个,也很不错了
  •   this is a classic book on laser spectroscopy!
  •   激光光谱学领域学习者和研究者必备的教材和工具书!
  •   激光光谱学入门及深造经典书籍。网上有最新电子版
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

京ICP备13047387号-7